
Introducing
.NET MAUI

Build and Deploy Cross-Platform
Applications Using C# and .NET 9.0
Multi-Platform App UI
—
Second Edition
—
Shaun Lawrence

Introducing .NET MAUI
Build and Deploy

Cross-Platform Applications
Using C# and .NET 9.0
Multi-Platform App UI

Second Edition

Shaun Lawrence

Introducing .NET MAUI: Build and Deploy Cross-Platform Applications

Using C# and .NET 9.0 Multi-Platform App UI, Second Edition

ISBN-13 (pbk): 979-8-8688-1188-3		 ISBN-13 (electronic): 979-8-8688-1189-0
https://doi.org/10.1007/979-8-8688-1189-0

Copyright © 2025 by Shaun Lawrence

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Ryan Byrnes
Editorial Project Manager: Gryffin Winkler

Cover designed by eStudioCalamar

Cover Image by hmmunoz512 from Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Shaun Lawrence
St Ives, UK

https://doi.org/10.1007/979-8-8688-1189-0

This book is dedicated to Soco our beloved family dog who
sadly passed before this second edition was written.

Boy, you helped me throughout the first edition and I know
how you always loved a good book with the girls at

bedtime. Rest well my friend. 

v

Table of Contents

About the Author��xix

About the Technical Reviewer��xxi

Acknowledgments��xxiii

Introduction��� xxv

Chapter 1: �Introduction to .NET MAUI��1

Abstract��1

What Is .NET MAUI?���1

Digging a Bit Deeper���4

Where Did It Come From?���5

How It Differs from the Competition���6

Why Use .NET MAUI?��7

Supported Platforms���7

Code Sharing��8

Developer Freedom��9

Community���9

Fast Development Cycle���10

Performance���10

Strong Commercial Offerings���11

vi

Limitations of .NET MAUI���12

No WebAssembly (WASM) Support���13

No Camera API��13

Apps Won’t Look Identical on Each Platform��13

Lack of Media Playback Out of the Box��14

The Glass Is Half Full, Though��15

How to Build .NET MAUI Applications���15

Visual Studio���15

Rider���16

Visual Studio Code��16

Summary���17

Chapter 2: �Building Our First Application��19

Abstract��19

Setting Up Your Environment���20

macOS��20

Windows���25

Visual Studio to macOS��27

Troubleshooting Installation Issues��31

.�NET MAUI Workload Is Missing��31

Creating Your First Application���33

Creating in Visual Studio��33

Creating in the Command Line���36

Building and Running Your First Application��37

Getting to Know Your Application���39

WidgetBoard���40

Summary���41

Source Code���41

Table of Contents

vii

Chapter 3: �The Fundamentals of .NET MAUI��43

Abstract��43

Project Structure��43

/Platforms/ Folder���46

/Resources/ Folder���49

Where to Begin?���54

Generic Host Builder��55

What Is Dependency Injection?��55

Registering Dependencies��59

Application Lifecycle��61

Application States��61

Lifecycle Events��62

Handling Lifecycle Events���63

Cross-Platform Mappings to Platform Lifecycle Events���������������������������������65

Platform-Specific Lifecycle Events���66

Summary���71

Chapter 4: �An Architecture to Suit You��73

Abstract��73

A Measuring Stick��74

Prerequisites��74

Model View ViewModel (MVVM)���75

Model��76

View��77

ViewModel��78

Model View Update (MVU)��80

Getting Started with MauiReactor��81

Overview of the MVU Project Format��82

Adding Your MVU Implementation��83

Table of Contents

viii

XAML vs. C# Markup��85

Plain C#��86

C# Markup��87

Chosen Architecture for This Book���88

Adding the ViewModels��89

Adding Views��94

Viewing Your Widget���97

MVVM Enhancements���99

Summary���103

Source Code���104

Chapter 5: �User Interface Essentials���105

Abstract��105

Prerequisites��105

Models��106

Pages��107

ViewModels��108

App Icons���109

Adding Your Own Icon���110

Platform Differences���111

Splash Screen��112

XAML��113

Dissecting a XAML File���114

Building Your First XAML Page���116

Layouts��118

AbsoluteLayout���118

FlexLayout��121

Grid���122

Table of Contents

ix

HorizontalStackLayout��125

VerticalStackLayout��126

Data Binding��129

Binding���129

Applying the Remaining Bindings���134

MultiBinding���135

Command���138

Compiled Bindings��141

Make Use of the BoardDetailsPage��142

Taking Your Application for a Spin��143

Summary���144

Source Code���144

Chapter 6: �Shell���145

Abstract��145

Prerequisites��145

Pages��145

ViewModels��147

Shell���149

ShellContent���150

Navigation��151

Flyout��157

Tabs��166

Search��172

ToolbarItems��177

Add a ToolbarItem to a ContentPage’s ToolbarItems������������������������������������178

Changing the PresentationMode of a ContentPage�������������������������������������179

Table of Contents

x

Summary���187

Source Code���188

Extra Assignment���189

Source Code���189

Chapter 7: �Creating Our Own Layout���191

Abstract��191

Placeholder��192

ILayoutManager���194

BoardLayout���195

BoardLayout.xaml���196

BoardLayout.xaml.cs��198

FixedLayoutManager��203

Accepting the Number of Rows and Columns for a Board���������������������������205

Providing Tap/Click Support Through a Command���������������������������������������207

Building the Board Layout��209

Setting the Correct Row/Column Position for Each Widget��������������������������211

Using Your Layout��213

Adding a Factory That Will Create Instances of Your Widgets����������������������213

WidgetTemplateSelector���218

Updating FixedBoardPageViewModel���220

Finally Using the Layout���222

Summary���224

Source Code���224

Extra Assignment���225

Source Code���225

Table of Contents

xi

Chapter 8: �Accessibility���227

Abstract��227

What Is Accessibility?��227

Why Make Your Applications Accessible?��228

What to Consider When Making Your Applications Accessible���������������������������228

How to Make Your Application Accessible���229

Screen Reader Support��230

Suitable Contrast��238

Dynamic Text Sizing��240

Testing Your Application’s Accessibility��245

Android���245

iOS��245

macOS��246

Windows���246

Useful Resources���247

Accessibility Checklist��247

A Guide for Making Apps Accessible��248

Summary���249

Source Code���250

Extra Assignment���250

Chapter 9: �Advanced UI Concepts��251

Abstract��251

Adding the Ability to Add a Widget to a Board��252

Possible Ways of Achieving Your Goal��252

The Chosen Approach���254

Styling��261

Examining the Default Styles��263

Table of Contents

xii

Creating a Style��265

AppThemeBinding��267

Further Reading��268

Triggers��268

Creating a DataTrigger��269

EnterActions and ExitActions��270

Creating a TriggerAction���271

Further Reading��273

Basic Animations��274

Combining Basic Animations��275

Cancelling Animations��276

Easings���277

Complex Animations���278

Combining Triggers and Animations��283

Behaviors���284

Creating Our Behavior��285

Attaching Our Behavior���287

Taking the Application for a Spin��288

Fonts��290

Embed the Font��291

Configure the Font��291

Use the Font���291

Taking the Application for a Spin��291

Summary���292

Source Code���294

Extra Assignment���294

Animate the BoxView Overlay���294

Table of Contents

xiii

Animate the New Widget��294

Source Code���294

Chapter 10: �Local Data��295

Abstract��295

What Is Local Data?���295

File System��296

Cache Directory��296

App Data Directory���297

Database��298

Repository Pattern��299

SQLite���311

LiteDB���319

Database Summary��326

Application Settings (Preferences)���327

What Can Be Stored in Preferences?���327

Setting a Value in Preferences���328

Getting a Value in Preferences���329

Checking If a Key Exists in Preferences���332

Removing a Preference��332

Displaying Our Preferences��332

Secure Storage��336

Storing a Value Securely���338

Reading a Secure Value��339

Removing a Secure Value���339

Platform Specifics��339

Viewing the Result���341

Table of Contents

xiv

Summary���343

Source Code���344

Extra Assignment���345

Source Code���345

Chapter 11: �Remote Data���347

Abstract��347

What Is Remote Data?���347

Considerations When Handling Remote Data���348

Web Services���350

The Open Weather API��350

Adding Some State���369

Simplifying Web Service Access��378

Prebuilt Libraries��379

Code Generation Libraries��379

Further Reading���381

StateContainer from CommunityToolkit.Maui���381

Summary���382

Source Code���383

Extra Assignment���383

TODO Widget���383

Quote of the Day Widget���383

NASA Space Image of the Day Widget��384

Source Code���384

Chapter 12: �Getting Specific��385

Abstract��385

.�NET MAUI Essentials���385

Permissions��386

Table of Contents

xv

Using the Geolocation API���391

Configuring Platform-Specific Components���397

Platform-Specific API Access���403

Platform-Specific Code with Compiler Directives��403

Platform-Specific Code in Platform Folders���405

Overriding the Platform-Specific UI���407

OnPlatform���407

Handlers���410

Summary���417

Source Code���417

Extra Assignment���418

Barometer Widget���418

Geocoding Lookup��418

Source Code���418

Chapter 13: �Testing��419

Abstract��419

Unit Testing��419

Unit Testing in .NET MAUI���420

Adding Your Own Unit Tests��421

Testing Your View Models���426

Testing Asynchronous Operations��428

Testing Your Views��436

Device Testing��438

Creating a Device Test Project��438

Adding a Device-Specific Test��441

Running Device-Specific Tests���443

Table of Contents

xvi

Snapshot Testing��444

Snapshot Testing Your Application��445

Passing Thoughts���449

Summary���449

Source Code���450

Chapter 14: �Automation Testing��451

Abstract��451

What Is Automation Testing?��451

Automation Testing in .NET MAUI���452

Installing Appium��453

Creating the Automation Test Project���459

Add the Appium NuGet Package���461

Creating an Appium Server���461

Creating the Appium Platform Drivers��463

Parameterizing the Tests��469

Writing the Automation Tests���472

Testing the Add New Board Button���473

Adding a Test to Create Boards��476

Adding a Test to Interact with a CollectionView���478

Summary���479

Source Code���480

Chapter 15: �Let’s Get Graphical���481

Abstract��481

.�NET MAUI Graphics���481

Drawing on the Screen���482

Further Reading��485

Table of Contents

xvii

Building a Sketch Widget���485

Creating the SketchWidgetViewModel���485

Representing a User Interaction���486

Creating the SketchWidgetView���487

Registering Your Widget���492

Taking Your Widget for a Test Draw��492

Building an Analog Clock Widget���493

Creating the AnalogClockWidgetView���494

Creating the AnalogClockWidgetViewModel���497

Registering Your Widget���502

Taking Your Widget for a Test Draw��502

Summary���503

Source Code���504

Extra Assignment���504

Source Code���504

Chapter 16: �Releasing Our Application��505

Abstract��505

Distributing Your Application��506

macOS��506

Windows���507

Android���507

iOS��511

macOS��516

Windows���517

Optimizing Your Application���519

Following Good Practices���520

Performance���521

Table of Contents

xviii

Trimming��524

Ahead-of-Time Compilation��531

When Libraries Don’t Support Trimming or AOT���536

Results��537

Crashes/Analytics���537

Obfuscation��538

Distributing Test Versions���541

Summary���541

Chapter 17: �Conclusion��543

Abstract��543

Looking at the Final Product��543

Taking the Project Further��546

Useful Resources���547

StackOverflow��547

GitHub���548

YouTube��548

Social Media���548

Yet More Goodness���549

Looking Forward��549

�Index��551

Table of Contents

xix

Shaun Lawrence is an experienced software

engineer who has been specializing in building

mobile and desktop applications for the past

20 years. He is a recognized Microsoft MVP

in Development Technologies for his work

helping the community learn and build with

Xamarin.Forms and .NET MAUI. His recent

discovery of the value he can add by sharing

his experience with others has thrust him on to

the path of wanting to find any way possible to

continue it.

Shaun actively maintains several open source projects within the .NET

community. A key project for the scope of this book is the .NET MAUI

Community Toolkit where he predominantly focuses on building good

quality documentation for developers to consume. Shaun lives in the UK

with his wife, two children, and their dog.

About the Author

xxi

Gerald Versluis is a Senior Software Engineer

at Microsoft working on .NET MAUI. Since

2009, Gerald has been working on a variety of

projects, ranging from front end to back end

and anything in between that involve C#, .NET,

Azure, ASP.NET, and all kinds of other .NET

technologies. At some point, he fell in love

with cross-platform and mobile development

with Xamarin, now .NET MAUI. Since that

time, he has become an active community member, producing content

online and presenting about all things tech on conferences all around the

world.  

About the Technical Reviewer

xxiii

I have a few people that I would like to thank for their assistance.

Firstly, Gerald: Not only have you reviewed this book, but you have

been there to help me overcome some tricky obstacles with either one of

your many YouTube videos or just general experience to guide me to a

sensible solution.

Secondly, Bailey, our family cockerpoo: Forcing me out on those

lengthy walks come rain or shine really helped me to clear my head and

provide some time for my brain to catch up. I can’t tell you how many

solutions we came up with and had to rush home to jot them down!

Thirdly, the team at Apress: You have all helped me to keep on track

and provide great support whenever I got stuck.

Finally, my family – my wife Levinia and daughters Zoey and Hollie:

Without your encouragement I would not have been brave enough to

take on the challenge to write this book. I am so grateful for the help and

sacrifices you have each made to help me get this book finished and even

the little slots of time waiting for you to finish dance class.

Acknowledgments

xxv

Introduction

Welcome to Introducing .NET MAUI.

This book has been written for developers who are new to .NET MAUI

and cross-platform development. You should have basic knowledge of C#

but require no prior knowledge of using .NET MAUI. The content ranges

from beginner through to more advanced topics and is therefore tailored

to meet a wide range of experiences. In fact, my intention is to allow you

to learn different levels of content upon multiple reads of this book; you

can feel free to skip past the more complex scenarios and just apply the

results at the end of the chapter if you do not feel ready for it. Then upon

subsequent read-throughs, I expect more and more to make sense.

This book provides an in-depth explanation of each key concept in

.NET MAUI, and you will then use these concepts in practical examples

while building a cross-platform application. The content has been

designed to primarily flow with the building of this application; however,

there is a secondary theme that involves grouping as many related

concepts as possible. The idea behind this is to both learn as you go and to

have content that closely resembles reference information, which makes

returning to this book as easy as possible.

All code examples in this book, unless otherwise stated, are applied

directly to the application you are building. Once key concepts have been

established, the book will offer improvements or alternatives to simplify

your future experiences as you build production-worthy applications.

This book does not rely upon these simplifications for all the practical

examples, and the reason for this is simple: I strongly believe that you need

to understand the concepts before you start to use them or use libraries

that do it for you.

xxvi

The application that we will build together throughout the course

of this book will be created using the default template provided by .NET

MAUI. This means that the project will have Nullable Reference Types

turned on; therefore, I would strongly recommend reading up on them if

you are unfamiliar before undertaking this book. Microsoft provides some

good documentation at https://learn.microsoft.com/dotnet/csharp/
nullable-references. Also note that we will aim to build an application

that is free of build warnings; don’t worry too much at this early stage, but

you will gain an understanding of why this is extremely important by the

time we reach the end of this book.

Finally, all chapters that involve adding code into the application

project contain a link to the resulting source code repository. This is to

show the final product and for you to use as a comparison if anything goes

wrong during your building of the application.

Introduction

https://learn.microsoft.com/dotnet/csharp/nullable-references
https://learn.microsoft.com/dotnet/csharp/nullable-references

1© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_1

CHAPTER 1

Introduction to
.NET MAUI

�Abstract
In this chapter, you will gain an understanding of what exactly .NET

MAUI is, how it differs from other frameworks, and what it offers you as a

developer wishing to build a cross-platform application that can run on

both mobile and desktop environments. I will also cover the reasons why

you should consider it for your next project by weighing the possibilities

and limitations of the framework as well as the rich array of tooling

options.

�What Is .NET MAUI?
.NET Multi-platform App UI, or .NET MAUI for short, is a cross-

platform framework that allows developers to build mobile and desktop

applications primarily written in C# and XAML. It allows developers to

target both mobile (Android and iOS) and desktop (macOS and Windows)

platforms from a single code base. Figure 1-1 shows the platforms officially

supported by .NET MAUI and Microsoft.

https://doi.org/10.1007/979-8-8688-1189-0_1#DOI

2

Figure 1-1.  .NET MAUI platform support

.NET MAUI provides a single API that allows developers to write code

once and run it anywhere. When building a .NET MAUI application, you

write code that interacts with this single cross-platform API, and .NET MAUI

provides the bridge between your code and the platform-specific layer.

If you take a look inside the prism in Figure 1-1, you can start to

understand the components that .NET MAUI both uses and offers.

Figure 1-2 shows how an Android application is compiled. We can make

the statement that when compiling our application for Android, Your code

is compiled against .NET MAUI and in turn .NET for Android.

Figure 1-2.  Interacting with .NET MAUI APIs

Figure 1-2 shows how our code only directly makes use of the .NET

MAUI APIs, but then under the hood, .NET MAUI makes use of the .NET

for Android APIs. It is through this approach that we as developers can

make the most of code sharing – by making the most of the API surface that

is provided to us by .NET MAUI.

Chapter 1 Introduction to .NET MAUI

3

There will be times when the API surface of .NET MAUI does not

provide everything that you need; for this, you will need to directly access

a platform feature. .NET MAUI provides enough flexibility that you can

achieve this by interacting directly with the platform-specific APIs:

•	 .NET for Android

•	 .NET for iOS

•	 .NET for macOS

•	 Windows UI Library (WinUI) 3

Figure 1-3 shows how the code bypasses the .NET MAUI APIs and

interacts directly with the .NET for Android APIs.

Figure 1-3.  Interacting with platform-specific APIs

This book focuses on building applications with .NET MAUI; we have

covered how .NET MAUI is built on top of the .NET frameworks for each

platform (e.g., .NET for Android). This means that if you wished to only

ever build an application to target Android, you can do that through the

.NET for Android framework. This allows you to still build an application

that targets Android and make use of .NET and C#.

Chapter 1 Introduction to .NET MAUI

4

�Digging a Bit Deeper
There are some extra steps that the tooling will perform under the hood

to get your application built and ultimately ready for use on each of the

possible platforms.

When building a .NET application, even if it is not using .NET MAUI,

you will very likely hear the term BCL, which is short for the base class

library. This is the foundation of all .NET applications, and in the same way

that .NET MAUI abstracts away the platforms you wish to build for, the BCL

abstracts away what that platform implements when your application runs.

To run your application on your desired platform, you need a .NET

runtime. For Android, iOS, and macOS, this is the Mono runtime. The

Mono runtime provides the ability to run .NET code on many different

platforms. For Windows, this is .NET CoreCLR. Each of these runtimes

provides the functionality required for the BCL and therefore a consistent

working environment across all supported platforms. I have opted to avoid

telling the history of the Mono runtime, not because I don’t believe it is

important – without it, this book wouldn’t be possible – but I feel many

others have told it well already and I don’t want to distract from the topic

at hand.

I like to think of the BCL as the contract between what we are

compiling against and what we are running that compiled code with.

Figure 1-4 shows all of the layers involved in compiling and running a

.NET MAUI application.

Chapter 1 Introduction to .NET MAUI

5

Figure 1-4.  The full breakdown

To continue with the example of building for Android in the previous

diagrams and taking note of the diagram in Figure 1-4, the following can

be said.

Your code is compiled against .NET MAUI, .NET for Android, and the

base class library. It then runs on the Mono runtime, which provides a

full implementation of the base class library on the Android platform.

Looking at the above statement, you can replace the parts that are

platform specific with another platform (e.g., swapping Android for iOS)

and the statement will still be true.

�Where Did It Come From?
.NET MAUI is the evolution of Xamarin.Forms, which itself has a rich

history of providing developers with a great way to build cross-platform

applications. Of course, no framework is perfect, and Xamarin.Forms

certainly had its limitations. Thankfully the team at Microsoft decided

to take the pragmatic approach of taking a step back and evaluating all

the pain points that existed for themselves as maintainers and (more

importantly) for us as developers using the framework.

Not only do we therefore gain improvements from the Xamarin

framework as part of this evolution, but we also get all the goodies that

come with .NET such as powerful built-in dependency injection, better

Chapter 1 Introduction to .NET MAUI

6

performance, and other topics that I will touch on throughout this book.

This makes me believe that this mature cross-platform framework has

finally become a first-class citizen of the .NET and Microsoft ecosystems. I

guess the clue is in the first part of its new name.

On the topic of its name, .NET MAUI implies that it is a UI framework,

and while this is true, this is not all that the framework has to offer.

Through the .NET and the .NET MAUI platform APIs, we are provided with

ways of achieving common application tasks such as file access, accessing

media from the device gallery, using the accelerometer, and more. The

.NET MAUI platform APIs were previously known as Xamarin Essentials,

so if you are coming in with some Xamarin Forms experience, they should

feel familiar but note that they have evolved to fit within .NET MAUI. I will

touch on much more of this functionality as you progress through this

book with the key chapters being Chapters 10 and 12.

�How It Differs from the Competition
.NET MAUI provides its own abstractions of types like controls (e.g., a

Button) and then maps them to the relevant implementation on each

platform. To continue with the example of a button, this is a UIButton

from UIKit on iOS and macOS, an AppCompatButton from AndroidX.
AppCompat.Widget on Android, and a Button from Microsoft.UI.Xaml.
Controls on Windows. Figure 1-5 shows how a .NET MAUI Button control

is mapped to each platform-specific implementation.

Figure 1-5.  How a Button control is mapped to the platform-specific
implementations

Chapter 1 Introduction to .NET MAUI

7

This gives a great level of coverage in terms of providing a common

implementation that works across all platforms. With the introduction of

the .NET MAUI handler architecture (which we will be looking at in more

detail in Chapter 12), we truly gain the power to tweak the smallest of

implementation details on a per-platform basis. This is especially useful

when the common API provided by .NET MAUI may be limited down to

the least amount of crossover between each platform and doesn’t provide

everything we need. It is worth noting that your application will render

differently on each platform as it utilizes the platform-specific controls and

therefore their look and feel.

Other frameworks such as Flutter opt to render their own types directly

rather than mapping across to the implementations provided by each

platform. These frameworks provide a common look and feel across each

platform. This is a hotly contested topic, but I personally believe that making

applications fit in with the platform they are running on is a big benefit.

�Why Use .NET MAUI?
There are several reasons why you should consider using .NET MAUI for

your next application: a large number of supported platforms, increased

code sharing capabilities, an emphasis on allowing developers to build

applications that fit their style, great performance, and many more. Let’s

take a look at them.

�Supported Platforms
.NET MAUI provides official support for all of the following platforms:

•	 Android 5.0 (API level 21) and above

•	 iOS 12.2 and above

Chapter 1 Introduction to .NET MAUI

http://dx.doi.org/10.1007/978-1-4842-9234-1_12

8

•	 macOS 12 and above (using Mac Catalyst) **

•	 Windows 11 and Windows 10 version 1809 desktop

and above

** Mac Catalyst allows native Mac apps to be built and share code with

iPad apps. This is an Apple technology that allows developers to share code

between Mac and iPad. For further reference, go to the Apple documentation

at https://developer.apple.com/mac-catalyst/.

.NET MAUI provides community-driven support for Tizen – the

implementation is provided by Samsung so while it isn’t directly provided

by Microsoft, Samsung is no small company.

I thoroughly recommend checking out the documented list of

supported platforms in case it has changed since the time of writing.

The list can be found at https://learn.microsoft.com/dotnet/maui/
supported-platforms.

�Code Sharing
A fundamental goal of all cross-platform frameworks is to enable

developers to focus on achieving their main goals by reducing the effort

required to support multiple platforms. This is achieved by sharing

common code across all platforms. Where I believe .NET MAUI excels over

alternative frameworks is in the first four characters of its name; Microsoft

has pushed hard to produce a single .NET that can run anywhere.

Being a full stack developer myself, I typically need to work on web-

based back ends as well as mobile applications; .NET allows me to write

code that can be compiled into a single library. This library can then be

shared between the web and client applications, further increasing the

code sharing possibilities and ultimately reducing the maintenance effort.

Chapter 1 Introduction to .NET MAUI

https://developer.apple.com/mac-catalyst/
https://learn.microsoft.com/dotnet/maui/supported-platforms
https://learn.microsoft.com/dotnet/maui/supported-platforms
https://learn.microsoft.com/dotnet/maui/supported-platforms
https://learn.microsoft.com/dotnet/maui/supported-platforms

9

I have given talks based on a mobile game (www.superwordsearch.com)

I built using Xamarin.Forms with a friend, where I boasted that we were

able to write 96% of our code in our shared project. We have recently

migrated from Xamarin.Forms to .NET MAUI and can confirm that the

shared code percentage has now increased to 99%!

There are further possibilities for sharing code between web and client,

such as the use of .NET MAUI Blazor Hybrid, which provides the use of

web-based technologies inside a .NET MAUI application. While I won’t be

covering .NET MAUI Blazor Hybrid in detail in this book, Microsoft does

provide some really great documentation and guides on what it is and

how to build your first application with the technology at https://learn.
microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui. The team

has also built a full and free workshop template designed for all levels of

developers to work through at https://aka.ms/blazor-hybrid-workshop.

�Developer Freedom
.NET MAUI offers many ways to build the same thing. Where Xamarin.

Forms was largely designed to support a specific application architecture

(such as MVVM, which I will talk all about in Chapter 4), .NET MAUI is

different. One key benefit of the rewrite by the team at Microsoft is it now

allows the use of other architectures such as MVU (Chapter 4). This allows

us as developers to build applications that suit our preferences, from

different architectural styles to different ways of building UIs and even

different ways of styling an application.

�Community
Xamarin has always had a wonderful community. From bloggers to open

source maintainers, there is a vast amount of information and useful

packages available to help any developer build a great mobile application.

One thing that has really struck me is the number of Microsoft employees

Chapter 1 Introduction to .NET MAUI

http://www.superwordsearch.com
https://learn.microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui
https://learn.microsoft.com/aspnet/core/blazor/hybrid/tutorials/maui
https://aka.ms/blazor-hybrid-workshop
http://dx.doi.org/10.1007/978-1-4842-9234-1_4
http://dx.doi.org/10.1007/978-1-4842-9234-1_4

10

who are part of this community; they are clearly passionate about the

technology and dedicate their own free time to contributing to this

community. The evolution to .NET MAUI brings this community with it;

Chapter 17 includes a set of resources that make discovering members

within the community and guidance on how to get involved.

�Fast Development Cycle
.NET MAUI offers two great ways to boost a developer’s productivity.

�.NET Hot Reload

.NET Hot Reload allows you to modify your managed source code while

the application is running, without the need to manually pause or hit a

breakpoint. Then, your code edits can be applied to your running app

without the need to recompile. It is worth noting that this feature is not

specific to .NET MAUI but is yet another great example of all the goodness

that comes with the framework being part of the .NET ecosystem.

�XAML Hot Reload

XAML Hot Reload allows you to edit the UI in your XAML files, save the

changes, and observe those changes in your running application without

the need to recompile. This is a fantastic feature that really shines when

you need to tweak some controls.

�Performance
.NET MAUI applications are compiled into native packages for each of the

supported platforms, which means that they can be built to perform well.

Android has always been the slowest platform when dealing with

Xamarin.Forms, and the team at Microsoft has been working hard and

showing off the improvements. The team has provided some really great

Chapter 1 Introduction to .NET MAUI

11

resources in the form of blog posts covering the progress that has been

made to bring the startup times of Android applications to well below

one second. These posts cover metrics plus tips on how to make your

applications really fly.(https://devblogs.microsoft.com/dotnet/
dotnet-9-performance-improvements-in-dotnet-maui/)

Android apps built using .NET MAUI compile from C# into

intermediate language (IL), which is then just-in-time (JIT) compiled to a

native assembly when the app launches.

iOS and macOS apps built using .NET MAUI are fully ahead-of-time

(AOT) compiled from C# into native ARM assembly code.

Windows apps built using .NET MAUI use Windows UI Library

(WinUI) 3 to create native apps that target the Windows desktop.

�Strong Commercial Offerings
There are several commercial options that provide additional UI elements

and other integrations such as Office document editing or PDF viewing in

your .NET MAUI applications. Some options (at the time of writing) are

•	 Syncfusion

	 “The feature-rich/flexible/fast .NET MAUI controls for

building cross-platform mobile and desktop apps with

C# and XAML”

	 www.syncfusion.com/maui-controls

•	 Telerik UI for .NET MAUI

	 “Kickstart your multiplatform application development

with a Preview version of Telerik UI for .NET MAUI

controls!”

	 www.telerik.com/maui-ui

Chapter 1 Introduction to .NET MAUI

https://devblogs.microsoft.com/dotnet/dotnet-9-performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/dotnet/dotnet-9-performance-improvements-in-dotnet-maui/
http://www.syncfusion.com/maui-controls
http://www.telerik.com/maui-ui

12

•	 DevExpress

	 “Our .NET Multi-platform App UI Component Library

ships with high-performance UI components for

Android and iOS mobile development (WinUI desktop

support is coming in 2022). The library includes a Data

Grid, Chart, Scheduler, Data Editors, CollectionView,

Tabs, and Drawer components.”

	 www.devexpress.com/maui/

•	 Grial UI Kit

	 “Grial offers a set of beautiful XAML UI pages, templates,

controls and helpers made for Xamarin.Forms and .NET

MAUI. These cover the most typical Mobile UI patterns

and are crafted by developers, for developers.”

	 https://grialkit.com/

Note that while these are commercial products, several of them

provide free licenses for smaller companies or independent developers so

I recommend checking out their products.

�Limitations of .NET MAUI
I hope this doesn’t get me in too much trouble with the wonderful team

over at Microsoft ☺. This section is not aimed at slating the technology (I

wouldn’t be writing a book about something I didn’t believe in); it is purely

aimed at making clear what cannot be achieved or at least what is not

provided out of the box, to help you as a reader best decide whether this is

the right technology for your next project. Of course, I hope it is, but let’s

look at what I feel are its main limitations.

Chapter 1 Introduction to .NET MAUI

http://www.devexpress.com/maui/
https://grialkit.com/

13

�No WebAssembly (WASM) Support
.NET MAUI does not provide support for targeting WebAssembly. This

means that you cannot target the web directly from a .NET MAUI project,

but you can still run Blazor inside your .NET MAUI application. This opens

the door for further code sharing; as discussed earlier, it is entirely possible

to build Blazor components that can be shared between .NET MAUI Blazor

Hybrid and .NET Blazor applications using the .NET MAUI Blazor Hybrid

and Web App template.

If you do require direct WASM support, then a good alternative to .NET

MAUI is the Uno Platform.

�No Camera API
This has been a pain point for a lot of developers throughout the life

of Xamarin.Forms and continues to be an initial pain point for .NET

MAUI. There are some good arguments as to why it hasn’t happened.

Building a camera API against the Android Camera offering has not been

an easy task, as I am sure most developers who have embarked on that

journey can attest to. The sheer fact that Google has recently rewritten the

entire API for a third time shows the inherent challenges.

�Apps Won’t Look Identical on Each Platform
Controls in .NET MAUI make use of the platform implementations;

therefore, an entry control on iOS will render differently to one on Android.

This approach quite often divides opinions – applications will look and feel

common to the platform that they are running on. Figure 1-6 shows how

a simple user interface consisting of Entry fields, a multi-line Editor, and a

Button renders on each of the supported platforms.

Chapter 1 Introduction to .NET MAUI

14

Figure 1-6.  Simple user interface renders on each of the supported
platforms

There are investigations into providing a way to avoid this and have

controls render exactly the same on all platforms, but this is still at an

early stage.

�Lack of Media Playback Out of the Box
Playing media has become a very common task. So many apps these days

offer the ability to play video or audio. I suspect this is also due to the vast

differences between platforms in how they provide playback support.

While this functionality is not officially provided by .NET MAUI, this

does not mean the functionality is not possible.

Chapter 1 Introduction to .NET MAUI

15

�The Glass Is Half Full, Though
I believe that limitations are not a bad thing. Doing some things well is

a far better achievement than doing everything badly! I expect the list of

limitations will reduce as .NET MAUI matures. Thanks to the fact that

.NET MAUI is open source, we as consumers have the ability to suggest

improvements and even provide them directly to further enhance this

framework. I must also add that the .NET MAUI Community Toolkit is

great (of course, I am biased because I currently help to maintain it). It

provides value for the .NET MAUI community, and it is also maintained by

that community. Another huge advantage is that concepts in this toolkit

can and have been promoted to .NET MAUI itself.

The .NET MAUI Community Toolkit also offers both APIs for

interacting with a camera connected to a device and media playback. This

gives me hope that one day there will be a solid choice for both camera

and media playback APIs in .NET MAUI.

�How to Build .NET MAUI Applications
There are several different ways to build an application with .NET MAUI. I

will look at each in turn, covering some details that will hopefully help you

decide which is the best fit for you.

�Visual Studio
Visual Studio is a comprehensive integrated development environment or IDE

that provides a great development experience. I have been using this tool for

years and I can happily say that it continues to improve with each new version.

To build .NET MAUI apps, you must use at least Visual Studio 2022.

Chapter 1 Introduction to .NET MAUI

16

In Visual Studio (Windows), it is possible to build applications

that target

•	 Android

•	 iOS*

•	 Windows

*A networked Mac with Xcode 13.0 or above is required for iOS

development and deployment. This is due to limitations in place by Apple.

Note that Visual Studio comes with three different pricing options, but

I would like to draw your attention to the Community edition, which is free

for use by small teams and for educational purposes. In fact, everything in

this book can be achieved using the free Community edition.

�Rider
JetBrains Rider is an impressive cross-platform IDE that can run on

Windows, macOS, and Linux. JetBrains has a history of producing great

tools to help developers achieve their goals. One highlight is ReSharper,

which assists with inspecting and analyzing code. With Rider, the

functionality provided by ReSharper is built in.

JetBrains offers Rider for free but only for educational use and open

source projects.

I will be using Rider as I build the application alongside this book.

�Visual Studio Code
Visual Studio Code is a very popular lightweight code editor also provided

by Microsoft. Using the .NET MAUI extension and the .NET CLI, it is

entirely possible to build .NET MAUI applications using no other tools.

It is worth noting that while the tooling within Visual Studio Code does

Chapter 1 Introduction to .NET MAUI

17

improve with each release, I find it leaves me feeling like I am missing out

some of the great pieces of functionality that come from a fully fledged

IDE. If you are new to development or new to .NET MAUI, I would

thoroughly recommend using Visual Studio or Rider.

You may find references to Visual Studio for Mac online; sadly this
tool has been recently discontinued; therefore, it doesn’t make it into
this section officially.

�Summary
Throughout the course of this book, you will primarily be using Visual

Studio as the tool to build your application. I will refer to Rider and Visual

Studio Code in the later parts when I cover how to deploy and test macOS

applications.

In this chapter, you have learned the following:

•	 What .NET MAUI is

•	 What it offers and what it does not offer

•	 Reasons why you should consider using it

•	 The tooling options available to build a .NET MAUI

application

In the next chapter, you will

•	 Get to know the application we will be building

together

•	 Learn how to set up the environment to build the

application

Chapter 1 Introduction to .NET MAUI

19© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_2

CHAPTER 2

Building Our First
Application

�Abstract
In this chapter, you will learn how to set up your development

environment across all of the required platforms. You will then use

that environment to create, build, and run your very first .NET MAUI

application. Finally, you will take a look at the application you will build as

you progress through this book.

It is worth noting that before setting up your environment, you cannot

support all platforms from a single environment. On Windows, you can

build for Windows and Android; you can also build for iOS, but you need to

connect Visual Studio to a Mac. On macOS, you can build for iOS, Android,

and macOS but not Windows. You can also develop on Linux and build

for Android; however, we won’t be covering how to configure a Linux

development environment in this book. Table 2-1 shows the compatibility

between development environment operating systems and which

platforms can be built for.

https://doi.org/10.1007/979-8-8688-1189-0_2#DOI

20

Table 2-1.  The breakdown of which platform can be built on each

operating system

Environment Can build for platform
Android iOS macOS Windows

Windows Yes Yes* No Yes

macOS Yes Yes Yes No

Linux Yes No No No

*Through the use of a Mac connected to Visual Studio

�Setting Up Your Environment
Before you get into creating and building the application, you must make

sure you have an environment set up.

�macOS
There are several tools that you must install on macOS to allow support for

building Mac Catalyst applications and to provide the ability to build iOS

applications from a Windows environment.

This is required if you wish to develop on macOS or deploy to a Mac

or iOS device (even from a Windows machine). If you are happy with only

deploying to Windows or Android from a Windows machine, then you can

skip this part or just read it for reference.

�Xcode

Xcode is Apple’s IDE for building applications for iOS and macOS. You

don’t need to use Xcode directly, but Visual Studio needs it in order to

compile your iOS and macOS applications.

Chapter 2 Building Our First Application

21

Thankfully this install is straightforward despite it being a rather large

download.

	 1.	 Open the App Store application.

	 2.	 Enter Xcode into the Search box and press return.

	 3.	 Click Get. Figure 2-1 shows Xcode available on the

Apple App Store.

Figure 2-1.  Xcode on the App Store

	 4.	 Once downloaded, open Xcode and wait for it to

install the command-line tools. Note that this is

usually required to be performed after each major

update to Xcode, too.

Chapter 2 Building Our First Application

22

I suggest using caution when applying updates to the whole suite

of applications that you are installing today. Typically, when a new, big

release of .NET MAUI comes out, it likely requires an update of Xcode. I

personally like to keep these expected versions in sync so I recommend

checking for the updates within Visual Studio first and verifying that it

expects a new version of Xcode before proceeding to update that.

To aid the effort in maintaining the version of Xcode installed on your

system, I would also thoroughly recommend the Xcodes tool which can be

found at https://github.com/XcodesOrg/XcodesApp. This tool allows you

to easily control which version is installed and even have multiple versions

installed and select the default for use. This can be especially useful when

wanting to investigate beta features while still working on production

versions.

�Remote Access

The final step to set up the macOS environment is to enable remote login

so that Visual Studio (Windows) can communicate to the Mac to build and

run iOS and macOS applications.

	 1.	 Open System Settings (macOS Ventura 13.0+) or

System Preferences on older macOS versions.

	 2.	 Select General on the left-hand panel and then

Sharing, as highlighted in Figure 2-2. This image

shows the macOS System Settings dialog with the

Sharing menu option highlighted.

Chapter 2 Building Our First Application

https://github.com/XcodesOrg/XcodesApp
https://github.com/XcodesOrg/XcodesApp

23

Figure 2-2.  macOS system settings

	 3.	 Enable Remote Login. Figure 2-3 shows the Remote

Login option enabled.

Chapter 2 Building Our First Application

24

Figure 2-3.  macOS sharing options

	 4.	 Add your user to the list of allowed users for

Remote Login. My user is an Administrator so the

Administrators user group enables remote login

access for this user. Figure 2-4 shows the Remote

Login editor to enable access for users on macOS.

Chapter 2 Building Our First Application

25

Figure 2-4.  macOS remote login options

	 5.	 That’s it! Your Mac should now be ready to use.

�Windows
�Visual Studio

First, you must install Visual Studio 2022. These steps will guide you

through getting it ready to build .NET MAUI applications:

	 1.	 Download and install Visual Studio 2022. This

can be accessed from https://visualstudio.
microsoft.com/downloads/.

Chapter 2 Building Our First Application

https://visualstudio.microsoft.com/downloads
https://visualstudio.microsoft.com/downloads

26

	 2.	 Run the installer and you will see the workload

selection screen. Select the Mobile development
with .NET workload. Figure 2-5 shows the Visual

Studio Windows installer with the required .NET

MAUI workloads checked.

Figure 2-5.  Visual Studio Windows installation options

Please refer to the Microsoft documentation page at https://learn.
microsoft.com/dotnet/maui/get-started/installation?tabs=vswin if

any of the installation options have changed.

�Enable Developer Mode

In order to run your .NET MAUI application on your Windows machine

through Visual Studio, you will first need to enable Developer Mode. This

can be done by the following steps:

	 1.	 Open the Settings application.

	 2.	 Type Developer in the search bar.

Chapter 2 Building Our First Application

https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vswin
https://learn.microsoft.com/dotnet/maui/get-started/installation?tabs=vswin

27

	 3.	 Select Developer Settings.

	 4.	 Enable the Developer Mode switch (see Figure 2-6).

	 5.	 Read and accept the dialog that pops up.

Figure 2-6.  The Developer Mode option in settings

�Visual Studio to macOS
The final item to configure in your Windows environment is to set up the

connection between Visual Studio and your macOS so that iOS and macOS

builds can be compiled.

	 1.	 Inside Visual Studio, select the Tools menu item.

	 2.	 Select iOS ➤ Pair to Mac.

	 3.	 Check and confirm the firewall access. Figure 2-7

shows the firewall request dialog that is presented

when first running Visual Studio on Windows.

Chapter 2 Building Our First Application

28

Figure 2-7.  Windows firewall request

	 4.	 Select your Mac from the list.

	 5.	 Click Connect. Figure 2-8 shows the Pair to Mac

dialog that allows you to connect your Visual Studio

running on Windows to your macOS machine.

Chapter 2 Building Our First Application

29

Figure 2-8.  Pair to Mac screen

	 6.	 Enter the username and password that you use to

log into your Mac.

	 7.	 Wait for the tooling to connect and make sure that

everything is configured on the Mac.

	 8.	 When you see the symbol shown in Figure 2-9, your

setup is complete. Figure 2-9 shows the Pair to Mac

dialog with the connected symbol against your

macOS machine.

Chapter 2 Building Our First Application

30

Figure 2-9.  Pair to Mac screen with confirmation

	 9.	 Visual Studio should now connect automatically

when you open a .NET MAUI solution. Figure 2-10

shows the Pair to Mac button in Visual Studio on

Windows.

Figure 2-10.  Visual Studio toolbar with Pair to Mac buttons

Chapter 2 Building Our First Application

31

�Troubleshooting Installation Issues
Given that there are several moving parts in the development ecosystem

when building .NET MAUI applications, there is room for things to go

wrong. In this section, I will go over a few common issues and how to

check that things are correctly set up.

�.NET MAUI Workload Is Missing
In order to check whether the .NET MAUI workload has been installed, you

can check either in Visual Studio Installer or through the command line.

�Visual Studio Installer

This currently only works on Windows, but you can follow these steps.

	 1.	 Open the Start menu.

	 2.	 Type in Visual Studio Installer.

	 3.	 Open the installer.

	 4.	 Select Modify on the Visual Studio 2022 installation.

	 5.	 View the workloads and check that the Mobile
development with .NET workload is ticked.

�Command Line

The command that we wish to run has the benefit of working on both

Windows and macOS, but opening a command prompt or terminal session

is different on each operating system. Let’s take a look at each in turn.

Chapter 2 Building Our First Application

32

�macOS

	 1.	 Open the Terminal application.

	 2.	 Enter the following command and then press return:

dotnet workload list

�Windows

	 1.	 Open the Command Prompt application.

	 2.	 Enter the following command and then press return:

dotnet workload list

�Results for Both

Both operating systems and applications will report the same results:

Installed Workload Id Manifest Version Installation Source
--
maui 9.0.X/9.0.X SDK 9.0.X

You should verify that the results include maui and that they are of the

expected version. For example, the current version is .NET MAUI 9.0 so we

are looking for the Manifest and Version to start with 9.0. If you are working

with a different major version, then confirm that it is installed.

If the version is not installed, you can then enter the following

command in your Command Prompt or Terminal application and

press return:

dotnet workload install maui --sdk-version=9.0.X

where the X above is the version you wish to install.

Chapter 2 Building Our First Application

33

�Creating Your First Application
You will be using the user interface in order to create your application,

build, and run it. I will also be including the dotnet command-line

commands because I find they can be quite helpful when building and

debugging.

�Creating in Visual Studio

	 1.	 Launch Visual Studio 2022. In the window that

opens, select the Create a new project option.

Figure 2-11 shows the initial starting screen in Visual

Studio running on Windows with the Create a new
project option highlighted.

Figure 2-11.  Creating a project in Visual Studio

Chapter 2 Building Our First Application

34

	 2.	 In the window that follows, type .NET MAUI in the

Search for templates box. Then select the .NET
MAUI App option and click Next. Figure 2-12 shows

the project creation screen with the .NET MAUI App

project selected.

Figure 2-12.  Selecting a .NET MAUI App project type

	 3.	 In the next window, enter a name for your project. I

chose WidgetBoard. Choose a location if you would

like to store it somewhere different from the default

location, and click Create. Figure 2-13 shows the

Configure your new project screen in Visual Studio.

Chapter 2 Building Our First Application

35

Figure 2-13.  The Configure your new project dialog

Please bear in mind that Windows has a limitation

on the length of the location path. If the path is

longer than 255 characters, then strange behavior

will follow. Visual Studio will fail to build perfectly

valid code and so on. This can be rectified

by disabling the path limit (https://learn.
microsoft.com/windows/win32/fileio/maximum-
file-path-limitation?tabs=cmd#enable-long-
paths-in-windows-10-version-1607-and-later).

	 4.	 Select the version of .NET you wish to use. At the

time of writing this book, .NET 9.0 is the current

version so I am using this version. Figure 2-14

shows the Additional information dialog where you

can choose the .NET Framework version for your

application.

Chapter 2 Building Our First Application

https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later
https://learn.microsoft.com/windows/win32/fileio/maximum-file-path-limitation?tabsxyscmd#enable-long-paths-in-windows-10-version-1607-and-later

36

Figure 2-14.  The .NET Framework selection dialog

	 5.	 Wait for the project to be created and any

background restore and build tasks to be completed.

Now admire the very first .NET MAUI application that we have created

together. Note that we didn’t tick the Include sample content check box on

the last page; this is because the sample content doesn’t fit our scenario

and we would end up deleting most of it. I would recommend creating

a project with this option ticked to gain an understanding of what they

provide as an example of how to build a good-looking application.

�Creating in the Command Line
While the command line might feel more complicated, at times there are

actually fewer steps required than when using Visual Studio.

Chapter 2 Building Our First Application

37

	 1.	 Open a Terminal/command-line session.

•	 On macOS, open the Terminal application.

•	 On Windows, open the Command Prompt

application.

	 2.	 cd to the location you want to create your

application:

cd c:\work\

	 3.	 Create the application, giving the project a name:

dotnet new maui --name WidgetBoard

	 4.	 cd to the new folder, WidgetBoard:

cd WidgetBoard

	 5.	 Pull in all dependencies for the application:

dotnet restore

You now have a .NET MAUI application. Let’s proceed to learning how

to build and ultimately run it.

�Building and Running Your First Application
Now that you have your project created, let’s go ahead and build and run it

in order to get familiar with the tooling. If this is the first time that you are

building and running a .NET MAUI application for Android, you will likely

see a prompt helping you to create an Android emulator. Please proceed

through this before you try to run the application on Android.

Chapter 2 Building Our First Application

38

The introduction of the single project approach for .NET MAUI

applications may bend your way of thinking when it comes to building

applications. In the past, a solution containing .NET projects would

typically have a single start-up project, but these projects would have a

single output. Now that a single project actually has multiple outputs, you

need to learn how to configure that for your builds. In fact, this is done by

clicking the down arrow, which can be seen in Figure 2-15.

Figure 2-15.  Build target selection drop-down in Visual Studio

You may also notice the drop-down in the above image that currently

says WidgetBoard (net9.0-android). This allows you to show in the visible

file what applies to that specific target, but it does not affect what you are

currently compiling. Figure 2-16 shows this a little clearer.

	 1.	 This is where you set the current target to compile

for and run.

Chapter 2 Building Our First Application

39

	 2.	 This is highlighting in the code file what will compile

for the target chosen in the drop-down. Notice here

that you are compiling for Windows but showing

what would compile for Android.

Figure 2-16.  The differences between what target is being compiled
and what target is being shown in the current editor

Figure 2-16 highlights items 1 and 2 from the above list to highlight

what is compiled vs. what is targeted in Visual Studio.

�Getting to Know Your Application
Together we will be building an application from the very initial stages

through to deploying it to stores for public consumption. Given that the

application will play such a pivotal role in this book, I want to introduce

you to the concept first.

Chapter 2 Building Our First Application

40

I want to try something a little bit different from the normal types of

apps that are built as part of a book or course. Something that requires a

fair amount of functionality that a lot of real-world applications also need.

Something that can help to make use of potentially older hardware so we

can give them a new lease on life.

�WidgetBoard
The application that we will be building together will allow users to turn

old tablets or computers into their own unique digital board. Figure 2-17

shows a sketch of how it could look once a user has configured it.

Figure 2-17.  Sketch prototype of the application we will be building

We will build “widgets” that can be positioned on the screen. These

widgets will range from showing the current time to pulling weather

information from a web API to displaying images from your library.

The user will also be able to customize the color, among other options, and

ultimately save these changes so that they will be remembered when the

user next opens the application.

Chapter 2 Building Our First Application

41

I am planning for this to provide a digital calendar/photo frame for our

home. I would love to hear or see what you are able to build.

�Summary
In this chapter, you have

•	 Set up your development environment so that you are

capable of creating, building, and ultimately running/

deploying the application

•	 Created, built, and run your very first .NET MAUI

application

•	 Met the application that we will be building together

In the next chapter, you will

•	 Dissect the application you just created

•	 Gain an understanding of the key components of a

.NET MAUI application

•	 Learn about the life cycle of a .NET MAUI application

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch02.

Chapter 2 Building Our First Application

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch02
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch02

43© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_3

CHAPTER 3

The Fundamentals
of .NET MAUI

�Abstract
In this chapter, you will dissect the project you created in Chapter 2

and dive into the details of each key area. The focus is to provide a good

overview of what a .NET MAUI single project looks like, where each of the

key components are located, and some common ways of enhancing them.

�Project Structure
.NET MAUI provides support for multiple platforms from within a single

project. The focus is to allow us as developers to share as much code and

as many resources as possible.

You will likely hear the term single project a lot during your time

working with .NET MAUI. It is a concept that is relatively new to the .NET

world, introduced as part of .NET MAUI. Its key feature is that you can

build applications for multiple different targets from, you guessed it, a

single project. If you have ever built .NET applications that aim to share

code, you will have noticed that each application you wanted to build and

https://doi.org/10.1007/979-8-8688-1189-0_3#DOI

44

deploy required its own project. The same was true with Xamarin.Forms in

that you would have at least one project with your common code and then

one project per platform. The single project now houses both the shared

code and the platform-specific bits of code.

Figure 3-1 shows a comparison between the old separate project

approach in Xamarin.Forms and the new .NET MAUI project format. The

squares represent a project file.

Figure 3-1.  Comparison of Xamarin.Forms projects to a .NET
MAUI project

Let’s inspect the project you created in Chapter 2 so that you can

start to get an understanding of how .NET MAUI supports the multiple

platforms and how they relate to shared code.

The new project has the following structure:

•	 Platforms/: This folder contains all the platform-

specific code. Inside this folder is a set of folders, each

with a name that relates to the platform that it supports.

Thus, Platforms/Android supports the Android

platform, Platforms/iOS supports the iOS platform,

and so on.

Chapter 3 The Fundamentals of .NET MAUI

45

•	 Resources/: This folder is where you store all your

resources for the application. A resource is typically

anything you wish to embed in the application that

isn’t strictly code, such as an image, a font file, or even

an audio or video file.

•	 MauiProgram.cs: This class is where you initialize your

.NET MAUI application. It makes use of the Generic

Host Builder, which is the Microsoft approach to

encapsulating the requirements of an application.

These requirements include but are not limited to

dependency injection, logging, and configuration.

•	 App.xaml.cs: This is the main entry point to the cross-

platform application. Note this line of code from the

MauiProgram.cs file includes our App class:

builder.UseMauiApp<App>();

•	 App.xaml: This file includes common UI resources

that can be used throughout the application. I will

cover these types of resources in much more detail in

Chapters 5 and 8.

•	 MainPage.xaml and MainPage.xaml.cs: These two files

combine to make up your application’s first page.

•	 AppShell.xaml and AppShell.xaml.cs: These two files

enable you to define how your application will be laid

out through the use of the .NET MAUI concept called

Shell. I will cover Shell extensively in Chapter 5.

Note that wherever you see a .xaml file, there will typically be an

associated .xaml.cs file. This is due to limitations in what XAML can

provide; it requires an associated C# file to cover the parts that XAML does

not support. I will cover XAML much more extensively in Chapter 5.

Chapter 3 The Fundamentals of .NET MAUI

http://dx.doi.org/10.1007/978-1-4842-9234-1_5
http://dx.doi.org/10.1007/978-1-4842-9234-1_8

46

It is also worth noting that you do not have to write any XAML. Sure,

.NET MAUI and its predecessor, Xamarin.Forms, have a deep connection

to XAML, but because the XAML is ultimately compiled down to C#,

anything that is possible to create in XAML is also possible in C#. The next

chapter (Chapter 4) will take you through the different possibilities for

architecting your applications.

�/Platforms/ Folder
I mentioned that the platform-specific code lives in the Platforms folder.

While cross-platform applications provide a nice abstraction from the

platforms we wish to support, I still believe it is extremely valuable to know

how these platforms behave. Let’s dive in and look at each of the platform

folders to understand what is happening.

�Android

Inside the Android platform folder, you will see the following files:

•	 Resources/values/colors.xml: This contains color

information used for the Android platform. If you

wish to change some of the colors used within your

application, you will need to update this file.

•	 MainApplication.cs: This is the main entry point for

the Android platform. Initially you should note that

it does very little. The bit it does is rather important,

though; it is responsible for creating the MauiApp using

the MauiProgram class. This is the bridge between the

Android application and your cross-platform .NET

MAUI code.

Chapter 3 The Fundamentals of .NET MAUI

47

•	 MainActivity.cs: An activity in Android development

is a type of app component that provides a user

interface. The MainActivity starts when your app is

loaded. This is typically done by tapping the app icon;

however, it can also be triggered by a notification or

other source.

•	 AndroidManifest.xml: This file is extremely important.

It is how you define the components that make up your

application, any permissions it requires, the application

version information, the minimum and target SDK

versions, and any hardware or software features that it

requires.

�iOS

Inside the iOS platform folder, you will see the following files:

•	 AppDelegate.cs: This class allows you to respond to all

platform-specific parts of the application lifecycle.

•	 Info.plist: This file contains configuration about

the application. It is like the AndroidManifest.xml file

discussed in the “Android” section. You can change

the application’s version and include reasons why your

application requires permission to use certain features.

•	 Program.cs: This is the main entry point.

Chapter 3 The Fundamentals of .NET MAUI

48

�MacCatalyst

Inside the MacCatalyst platform folder, you will see the following files.

It is worth noting that this section is nearly identical to the previous iOS

section. It’s been kept separate to provide an easy reference to what the

platform folder consists of for MacCatalyst.

•	 AppDelegate.cs: This class allows you to respond to all

platform-specific parts of the application lifecycle.

•	 Entitlements.plist: This file contains a key-value

pair list of capabilities that your macOS application

requires.

•	 Info.plist: This file contains configuration about

the application. It is like the AndroidManifest.xml file

discussed in the “Android” section; you can change

the application version and include reasons why your

application requires permission to use certain features.

•	 Program.cs: This is the main entry point.

�Tizen

Inside the Tizen platform folder, you will see the following files:

•	 Main.cs: This is the main entry point for your Tizen

application.

•	 tizen-manifest.xml: This file is very similar to the

AndroidManifest.xml file. It is how you define the

components that make up your application, any

permissions it requires, the application version

information, the Tizen API version, and any hardware

or software features it requires.

Chapter 3 The Fundamentals of .NET MAUI

49

�Windows

Inside the Windows platform folder, you will see the following files:

•	 app.manifest: The package manifest is an XML

document that contains the info the system needs to

deploy, display, or update a Windows app. This info

includes package identity, package dependencies,

required capabilities, visual elements, and extensibility

points. Every app package must include one package

manifest.

•	 Package.appxmanifest: An application manifest is an

XML file that describes and identifies the shared and

private side-by-side assemblies that an application

should bind to at runtime. They should be the

same assembly versions that were used to test the

application. Application manifests may also describe

metadata for files that are private to the application.

�Summary

Phew! That felt like a lot to take in! I think I need to take a tea break! Don’t

worry, though; while this gives an overview of what each of the files is

responsible for, you will be modifying most of them throughout this book

with some practical examples, so if there are any points that aren’t clear, or

you feel you will need to revisit them, you certainly will be.

�/Resources/ Folder
The Resources folder is where you store anything you want to include in

your application that is not strictly code. Let’s look through each of the

subfolders and key types of resource.

Chapter 3 The Fundamentals of .NET MAUI

50

�AppIcon

This aptly named folder is responsible for housing the icon image files

used to generate our application’s icon. The default project that is created

provides us with two images in this folder. In Chapter 5, you will learn how

to replace the defaults and how the app icons are structured. This type of

resource is called a MauiIcon.

�Fonts

.NET MAUI allows you to embed your own custom fonts. This is especially

handy if you are building an app for a specific brand, or you want to make

sure that you render the same font on each platform. You can embed either

True Type Fonts (.ttf files) or Open Type Fonts (.otf files).

A word of warning around fonts. I strongly recommend that you check

the licensing rules around fonts before including them in your application.

While there are sites that make it possible to download fonts freely, a very

large percentage of those fonts usually require paying to use them.

There are two parts to embedding a font so that it can be used within

your application.

	 1.	 The font file should be placed in this folder

(Resources/Fonts).

By default, the font will be automatically included

as a font file based on the following line that can be

found inside the project file (WidgetBoard.csproj):

<MauiFont Include="Resources\Fonts*" />

What the above line does is set the build action of

the file you just included to be of type MauiFont.

If you want to perform this manually, you can right-

click the file inside Visual Studio, click Properties,

and inside the Properties panel, set the Build Action

to MauiFont.

Chapter 3 The Fundamentals of .NET MAUI

51

	 2.	 Configure the font.

When bootstrapping your application, you need

to specify which fonts you wish to load. This is

performed with the following lines inside your

MauiProgram.cs file:

.ConfigureFonts(fonts =>
{
 fonts.AddFont("Lobster-Regular.ttf", "Lobster");
});

In the above example, you add the font file Lobster-Regular.ttf to

the collection of fonts and give it an alias of Lobster. This means you can

just use the name of Lobster when referring to the file in your application.

�Images

Practically every application you build will include some images. Each

platform that you wish to support has its own rules on the image sizes that

you need to supply to make the image render as sharp and clear on the

many devices they run. Take iOS, for example. In order to supply a 24×24

pixel image in your app, you must provide three different image sizes:

24×24, 48×48, and 72×72. This is due to the different DPIs for the devices

Apple builds. Android devices follow a similar pattern, but the DPIs are not

the same. This is similar for Windows.

Figure 3-2 shows an example image that would be rendered at 24×24

pixels. Note that while Windows shows the three sizes, this is just based on

recommendations for trying to cover the most common settings. In truth,

Windows devices can have their DPIs vary much more. Figure 3-2 shows

the required image sizes needed for all supported platforms in order to

render a 24×24 pixel image.

Chapter 3 The Fundamentals of .NET MAUI

52

Figure 3-2.  Required image sizes across the various platforms

You can see from the figure above that it can become painful very

quickly if you have a lot of images in your application each requiring at

least five different sizes to be maintained. Thankfully .NET MAUI gives

us the ability to provide a single Scalable Vector Graphics (SVG) image,

Chapter 3 The Fundamentals of .NET MAUI

53

and it will generate the required images for all the platforms when the

application is compiled. I cannot tell you how happy all of us Xamarin.

Forms old timers are at this new piece of functionality!

As it currently stands, if the SVG image is of the correct original size,

you can simply drop the image into the /Resources/Images/ folder and it

will just begin to work in your application. In a similar way to how the fonts

are automatically picked up, you can see how the images are also handled

by looking inside your project file and observing the line <MauiImage
Include="Resources\Images*" />.

.NET MAUI doesn’t render SVGs directly but generates PNG images

from the SVGs at compile time. This means that when you are referring

to the image you wish, it needs to have the .png extension. For example,

when embedding an image called image.svg, in code, you refer to it as

image.png.

If the contents of the SVG are not of the desired size, then you can add

some configuration to tell the tooling what size the image should be. For

this, the image should not be added to the /Resources/Images/ folder as

the tooling will end up generating duplicates and there is no telling which

one will win. Instead, you can simply add the image to the /Resources/

folder and then add the following line to your project file:

<MauiImage Include="Resources\image.svg" BaseSize="24,24" />

The above code will treat the contents of the image.svg file as being

24×24 pixels and then scale for each platform based on that size.

�Raw

The next type of resource to embed is raw files. This essentially means that

what is embedded can be loaded at runtime. A typical example of this is to

provide some data to preload into the application when first starting. This

type of resource is called a MauiAsset.

Chapter 3 The Fundamentals of .NET MAUI

54

�Splash

This folder is created by default to show how a splash screen can be added

to a .NET MAUI application. In Chapter 5, you will learn how to customize

the defaults and provide your own splash screen along with the many

ways a splash screen can be customized. This type of resource is called a

MauiSplashScreen.

�Styles

The Styles folder is where developers are encouraged to create style-

related resources; these could be control styles, color palettes, or even CSS

styles. We will cover these items throughout the book with the main focus

being in Chapter 5. There isn’t a single type of resource for the contents

of this folder but the two defaults created for us; Colors.xaml and Styles.

xaml are of type MauiXaml, and these will be the most common type of

resources that you will create here.

This concludes the section on the /Resources/ folder. Let’s proceed to

covering where an application begins its life.

�Where to Begin?
.NET MAUI applications have a single main entry point that is common

across all platforms. This provides us with a way to centralize much of the

initialization process for our applications and therefore only write it once.

You will have noticed that in each of the platform-specific main

entry points covered in the previous section, they all call MauiProgram.
CreateMauiApp();. This is the main entry point into your .NET MAUI and

shared application.

Chapter 3 The Fundamentals of .NET MAUI

55

The CreateMauiApp method allows you to bootstrap your application.

Bootstrapping refers to a self-starting process that is supposed to continue

or grow without external input (Wikipedia quote). This means that

your implementation in this method is responsible for configuring the

application from setting up logging, general application configuration, and

registering implementations to be handled with dependency injection.

This is one of the big improvements in .NET MAUI over Xamarin.Forms.

This is done through the Generic Host Builder.

�Generic Host Builder
I mentioned back in Chapter 1 that one of the benefits that comes with the

evolution to .NET MAUI is powerful dependency injection. The Generic

Host Builder is tried and tested through other .NET frameworks such as

ASP.NET Core, and it has thankfully become available to all application

types now.

Before we jump into how the Generic Host Builder works, let’s look at

what exactly dependency injection is and why you should use it.

�What Is Dependency Injection?
Dependency injection (DI) is a software design pattern aimed at reducing

hard-coded dependencies in a software application. A dependency is

an object that another object depends on. This hard-coded dependency

approach is referred to as being tightly coupled. Let’s work through an

example to show how and why it’s named so and how you can remove the

need for the hard-coded dependencies, thus making your design loosely

coupled.

Chapter 3 The Fundamentals of .NET MAUI

56

So, my wife is a fantastic baker. She bakes these beautiful, delicious

cakes, and this is the main reason I have gained so much weight recently.

I am going to use the process of her baking a cake to show this concept of

dependencies.

public class Baker
{
 public Cake Bake()
 {
 }
}

The above code looks relatively straightforward, right? She bakes a

cake. Now let’s consider how she might go about making the cake. She

needs a way of sourcing the ingredients, weighing them, mixing them, and

finally baking them. We end up with something like

public class Baker
{
 �private readonly WeighingScale weighingScale = new

WeighingScale();
 private readonly Oven oven = new Oven();
 �private readonly MixingMachine mixingMachine = new

MixingMachine();
 �private readonly IngredientsProvider ingredientsProvider =

new IngredientsProvider();
 public Cake Bake()
 {
 Ingredient ingredient = ingredientsProvider.Provide();
 weighingScale.Weigh(ingredient);
 }
}

Chapter 3 The Fundamentals of .NET MAUI

57

We can see that for the Baker to do their job, they need to know

about all these different pieces of equipment. Now imagine that the

WeighingScale breaks, and a replacement is provided. The Baker will

still need to weigh the ingredients but won’t care how that weighing

is performed. Imagine that the new WeighingScale is digital and now

requires batteries. There are a few reasons why we want to move away from

having hard-coded dependencies as in our Baker example.

•	 If we did replace the WeighingScale with a different

implementation, we would have to modify the

Baker class.

•	 If the WeighingScale has dependencies (e.g., batteries

in our new digital scale), they must also be configured

in the Baker class.

•	 This becomes more difficult to unit test because the

Baker is creating dependencies and therefore a unit test

would result in having to test far more than a unit test is

designed to.

Dependency injection can help us to address the above issues by

allowing us to achieve Inversion of Control (IoC). Inversion of Control

essentially means that we are inverting the knowledge of the dependency

from the Baker knowing about a WeighingScale to them knowing about

something that can weigh ingredients but not an actual implementation.

This is done through the introduction of an interface which we will call

IWeighingScale.

public class Baker
{
 private readonly IWeighingScale weighingScale;
 private readonly Oven oven = new Oven();
 �private readonly MixingMachine mixingMachine = new

MixingMachine();

Chapter 3 The Fundamentals of .NET MAUI

58

 �private readonly IngredientsProvider ingredientsProvider =
new IngredientsProvider();

 public Baker(
 IWeighingScale weighingScale)
 {
 this.weighingScale = weighingScale;
 }
 public Cake Bake()
 {
 Ingredient ingredient = ingredientsProvider.Provide();
 this.weighingScale.Weigh(ingredient);
 }
}

Now our Baker knows about an interface for something that can weigh

their ingredients but not the actual thing that does the weighing. This

means that in the scenario where the weighing scale breaks and a new

one is supplied, there is no change to the Baker class in order to handle

this new scale. Instead, it is registered as part of the application startup or

bootstrapping process. Of course, we could and should follow the same

approach for our other dependencies.

One additional concept I have introduced here is the use of constructor

injection. Constructor injection is the process of providing the registered

dependencies when creating an instance of our Baker. So, when our Baker

is created, it is passed an instance of WeighingScale.

If you have a background with Xamarin.Forms, you will have come

across the DependencyService. This provided a mechanism for managing

dependency injection within an application; however, it received criticism

in the past for not supporting constructor injection. This doesn’t mean

it wasn’t possible to achieve constructor injection in Xamarin.Forms

applications, but it required the use of a third-party package and there are

a lot of great packages out there! Now it is all baked into .NET MAUI.

Chapter 3 The Fundamentals of .NET MAUI

59

�Registering Dependencies
In the previous section, I discussed how to minimize concrete

dependencies in your code base. Now let’s look through how to configure

those dependencies so that the dependents are given the correct

implementations.

Implementations that you register in the generic host builder are

referred to as services, and the work of providing the implementations out

to dependents is referred to as the ServiceProvider. You can register your

services using the following.

�AddSingleton

A singleton registration means that there will only ever be one instance

of the object. So, based on the example of our Baker needing to use an

IWeighingScale, we register it as follows:

builder.Services.AddSingleton<IWeighingScale, WeighingScale>();

Then every time that an IWeighingScale is resolved, we will be

provided with the same instance. This suits the weighing scale example

because we use the same one throughout our baking process.

It is extremely unlikely that you will ever need to register a view
model as a singleton. Doing so can introduce bits of behavior that you
are most likely not expecting on top of the fact that you can run the
risk of leaking memory.

Chapter 3 The Fundamentals of .NET MAUI

60

�AddTransient

A transient registration is the opposite of a singleton. Every time an

implementation is resolved, a new instance is created and provided. So

based on the example of our Baker needing to use an IWeighingScale, we

register it as follows:

builder.Services.AddTransient<IWeighingScale, WeighingScale>();

As mentioned, every time an IWeighingScale is resolved, we will

be provided with a new instance. A better example here might be the

greaseproof paper that lines the cake tins. They are used once and

thrown away.

�AddScoped

A scoped registration is somewhere in the middle of a singleton and

transient. A single instance will be provided for a “scope,” and then when

a new scope is created, a new instance will be provided for the life of

that scope.

builder.Services.AddScoped<IWeighingScale, WeighingScale>();

This type of registration feels much better suited to a web application

where requests come in and a scope will represent a single request. In the

mobile and desktop world, your application typically has a single state and

therefore is less likely to need scoped registrations. Currently .NET MAUI

does not provide any automatic creations of scopes, but you have the

power to create your own using the IServiceScopeFactory interface and

ultimately its implementation.

This concludes the section on the Generic Host Builder and

dependency injection. Let’s proceed onto learning about the lifecycle of an

application.

Chapter 3 The Fundamentals of .NET MAUI

61

�Application Lifecycle
Sadly, no two platforms provide the same set of behaviors or lifecycle

events such as when an application is started, backgrounded, or closed.

This is where cross-platform frameworks provide us with a solid set

of encapsulated events to cover most scenarios. There are four main

application states in a .NET MAUI application.

�Application States
These are the application states:

•	 Not running: This means that the application has not

been started and is not loaded into memory. This is

typically when the application has been installed,

the device has been powered on, the application

was closed by the user, or the operating system has

terminated the application to free up some resources.

•	 Running: This means that the application is visible and

is focused.

•	 Deactivated: This means that the application is no

longer focused but may still be visible. On mobile, this

could mean that the operating system is showing a

permission request alert (e.g., an application asking for

permission to use the camera) or similar.

•	 Stopped: This means that the application is no longer

visible.

You can now see how a .NET MAUI application moves between the

above four states and the events that are triggered to an application.

Figure 3-3 shows the possible states that a .NET MAUI application can take

during its lifetime and how it transitions between those states.

Chapter 3 The Fundamentals of .NET MAUI

62

Figure 3-3.  Application state lifecycle chart

Before we dive into the details of each of the events that are fired

between the state transitions, I need to give you some background on

how they can be accessed and why. In order to access these events, you

must access the Window class. It certainly isn’t a common concept to have

a window in a mobile application, but you must appreciate that you are

dealing with a cross-platform framework and therefore an approach that

fits desktop as well as mobile. I see it as follows: a mobile application is a

single window application, and a desktop is likely to be multi-window.

�Lifecycle Events
Now on to the events that move an application between states. These are

the annotations on the arrows from Figure 3-3:

•	 Created: This event is raised after the platform window

has been created. Note that the window may not be

visible yet.

•	 Activated: This event is raised when the window is the

focused window.

Chapter 3 The Fundamentals of .NET MAUI

63

•	 Deactivated: This event is raised when the window is

no longer the focused window. Note that the window

may still be visible.

•	 Stopped: This event is raised when the window is no

longer visible. The application may resume from this

state but it is not guaranteed, so it is recommended that

you cancel any long-running processes or anything

that may consume resources on the device. Mobile

operating systems are much stricter on what can

happen in the background.

•	 Resumed: This event is raised when an application

resumes from the Stopped state. It is recommended

to prepare your application for full use again (e.g.,

subscribe to events or messages, refresh any visible

content).

•	 Destroying: This event is raised when the platform

window is being destroyed and removed from memory.

It is recommended that you unsubscribe from events or

messages.

�Handling Lifecycle Events
By default, a .NET MAUI application won’t give you access to the lifecycle

events; this is something you must opt in for. In order to opt in, you must

modify your App class.

Chapter 3 The Fundamentals of .NET MAUI

64

Open Visual Studio. You need to add a new class to your project and

call it StateAwareWindow. Your new class will need to be modified so it

looks as follows:

public class StateAwareWindow: Window
{
 public StateAwareWindow() : base()
 {
 }
 public StateAwareWindow(Page page) : base(page)
 {
 }
 protected override void OnCreated()
 {
 // Initialise our application
 }
}

Inside of your application, you can override all methods that will

be executed when the specific event occurs. Each override method

follows the naming of the events, as described previously, with a prefix

of On. Therefore, to handle the Activated event, you override the

OnActivated method.

The final step is to make use of the new class, so inside your App.xaml.
cs file, add the following:

protected override Window CreateWindow(IActivationState
activationState)
{
 return new StateAwareWindow(MainPage);
}

Chapter 3 The Fundamentals of .NET MAUI

65

This will create a new instance of StateAwareWindow and pass it a

reference to the application’s MainPage. If you do not pass in a reference

to a Page to the Window implementation, you will experience exceptions

being thrown.

�Cross-Platform Mappings to Platform
Lifecycle Events
I strongly believe that despite the fact that .NET MAUI provides us

with these unified events, you should understand how they map to the

underlying platforms. If you understand what is being called on the

platform-specific side, it can really help to diagnose things when they go

wrong or perhaps point you in the direction of a better approach for your

scenarios.

Let’s break down how the .NET MAUI lifecycle events map to the

platform-specific events and then show off the bits that are not mapped if

you ever need to use them. See Table 3-1.

Table 3-1.  Cross-platform lifecycle events mapped to the

platform-specific events

Event Android iOS/Mac Catalyst Windows

Created OnPostCreate FinishedLaunching Created

Activated OnResume OnActivated Activated(Code
Activated and
PointerActivated)

Deactivated OnPause OnResignActivation Activated
(Deactivated)

Stopped OnStop DidEnterBackground VisibilityChanged

Resumed OnRestart WillEnterForeground Resumed

Destroying OnDestroy WillTerminate Closed

Chapter 3 The Fundamentals of .NET MAUI

66

This list may not provide too much meaning right now, and I wouldn’t

worry yourself with needing to know this. The aim here is to provide you

with a quick look-up to be able to then research if any lifecycle events are

going wrong or possibly not the right fit for your solution. I can safely say

that a large number of the issues I have helped clients with in the past

are around how the lifecycle of an application differs on each platform

supported by .NET MAUI.

�Platform-Specific Lifecycle Events
There are actually many platform-specific lifecycle events that .NET MAUI

does not map to. What .NET MAUI does provide is a set of lifecycle events

that map consistently across all platforms. The rest in this section are really

specific to each individual platform. I won’t be covering all of the details of

each individual event; however, I will cover how to make use of one so that

you will know how to make use of an event that better suits your use case.

When searching for information around a platform-specific event,

don’t feel constrained to searching for .NET MAUI-specific documentation.

You have the power to leverage the platform APIs. You should be able

to search for information in the context of Android or iOS, and the code

should be relatively easy to translate into C#.

In order to register for a platform-specific event, you need to make use

of the ConfigureLifecycleEvents method on the MauiAppBuilder class.

Let’s look at a concrete example for each platform. The code in each of the

following examples is largely the same, but the duplication has been kept

to show the bigger picture. I have highlighted the differences in bold to

show the key differences.

Chapter 3 The Fundamentals of .NET MAUI

67

�Android

To receive a notification for an Android lifecycle event, you call the

ConfigureLifecycleEvents method on the MauiAppBuilder object. You

can then make use of the AddAndroid method and specify the events you

wish to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;
namespace WidgetBoard;
public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureLifecycleEvents(events =>
 {
#if ANDROID
 events.AddAndroid(lifecycle=>
 �lifecycle.OnStart((activity) =>

OnStart(activity)));
 static void OnStart(Activity activity)
 {
 // Perform your OnStart logic
 }
#endif
 });
 return builder.Build();
 }
}

Chapter 3 The Fundamentals of .NET MAUI

68

For more information on the available lifecycle events, I recommend

checking out the following documentation pages:

Microsoft: https://learn.microsoft.com/dotnet/maui/
fundamentals/app-lifecycle#android

Android: https://developer.android.com/guide/components/
activities/activity-lifecycle

�iOS and MacCatalyst

To receive a notification for an iOS lifecycle event, you call the

ConfigureLifecycleEvents method on the MauiAppBuilder object. You

can then make use of the AddiOS method and specify the events you wish

to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;
namespace WidgetBoard;
public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureLifecycleEvents(events =>
 {
#if IOS || MACCATALYST
 events.AddiOS(lifecycle =>
 �lifecycle.OnActivated((app) =>

OnActivated(app)));
 �static void OnActivated(UIKit.UIApplication

application)

Chapter 3 The Fundamentals of .NET MAUI

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#android
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#android
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle

69

 {
 // Perform your OnActivated logic
 }
#endif
 });
 return builder.Build();
 }
}

For more information on the available lifecycle events, I recommend

checking out the following documentation pages:

Microsoft: https://learn.microsoft.com/dotnet/maui/
fundamentals/app-lifecycle#ios

iOS: https://developer.apple.com/documentation/uikit/app_and_
environment/managing_your_app_s_life_cycle?language=objc

�Windows

To receive a notification for a Windows lifecycle event, you call the

ConfigureLifecycleEvents method on the MauiAppBuilder object. You

can then make use of the AddWindows method and specify the events you

wish to handle and how you wish to handle them.

using Microsoft.Maui.LifecycleEvents;
namespace WidgetBoard;
public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureLifecycleEvents(events =>

Chapter 3 The Fundamentals of .NET MAUI

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#ios
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle#ios
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle?language=objc
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle?language=objc

70

 {
#if WINDOWS
 events.AddWindows(lifecycle =>
 �lifecycle.OnActivated((window, args) =>

OnActivated(window, args)));
 �static void OnActivated(Microsoft.

UI.Xaml.Window window, Microsoft.UI.Xaml.
WindowActivatedEventArgs args)

 {
 // Perform your OnActivated logic
 }
#endif
 });
 return builder.Build();
 }
}

For more information on the available lifecycle events, I recommend

checking out the following documentation page:

Microsoft: https://learn.microsoft.com/dotnet/maui/
fundamentals/app-lifecycle#windows

You may have noticed the usage of #if statements. Due to the nature of

compiling for multiple platforms in a single project, you will need to write

platform-specific code. If, like me, you do not like the #if statement or you

would like to keep its usage to a minimum, then fear not; we will be taking

a closer look at minimizing it in Chapter 13.

Chapter 3 The Fundamentals of .NET MAUI

https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle
https://learn.microsoft.com/dotnet/maui/fundamentals/app-lifecycle

71

�Summary
In this chapter, you have

•	 Walked through the main components of a .NET MAUI

application

•	 Earned a tea break

•	 Learned about the startup process

•	 Learned about the life of a .NET MAUI application

In the next chapter, you will

•	 Learn about the different possibilities you have to

architect your applications

•	 Decide on what architecture to use

•	 Walk through a concrete example by creating your

ClockWidget

•	 Learn how to further optimize your implementation

using NuGet packages

Chapter 3 The Fundamentals of .NET MAUI

73© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_4

CHAPTER 4

An Architecture
to Suit You

�Abstract
In this chapter, you will look through some possible architectural patterns

that can be used to build .NET MAUI applications. The objective is to

provide you with enough detail to help you find the architecture that best

fits you. I want to point out that there are no right answers concerning

which architecture to choose. The best option is to go with one that you

feel will benefit you and your team.

I aim to quash the following myths throughout the course of this

chapter:

“You are forced to use XAML.”

“You are forced to use MVVM.”

There seems to be a common misconception that .NET MAUI (and

previously Xamarin.Forms) is built largely around using only XAML and

MVVM. While this is the most common approach taken by developers, it is

not forced upon us.

In order to compare some of the available architecture options, we will

need something to compare; this leads us onto our measuring stick.

https://doi.org/10.1007/979-8-8688-1189-0_4#DOI

74

�A Measuring Stick
You will build the same control with each of the options to provide a way to

compare the differences. The control you will be building is a ClockWidget.

The purpose of this control is to do the following:

•	 Display the current time in your app.

•	 Update the time every minute.

Figure 4-1 shows a very rough layout of the control with the current date

and time. You will tidy this up later with the ability to format the date and time

information in Chapter 5, but for now, let’s just focus on a limited example to

highlight the differences in options. Figure 4-1 shows how the ClockWidget

will render in your application when you have finished with this chapter.

Figure 4-1.  Sketch of how the ClockWidget control will render

�Prerequisites
Before you get started with each of the architectures you will be reviewing

in this chapter, you need to do a little bit of background setup to prepare.

You need to add a single new class. This implementation will allow

your widgets to schedule an action of work to be performed after a specific

period of time. In your scenario of the ClockWidget, you can schedule an

update of the UI. Let’s add this Scheduler class into your project.

•	 Right-click the WidgetBoard project.

•	 Select Add ➤ Class.

•	 Give it the name of Scheduler.

•	 Click Add.

Chapter 4 An Architecture to Suit You

75

You want to modify the contents of the file to look as follows:

namespace WidgetBoard;

public class Scheduler
{
 �public void ScheduleAction(TimeSpan timeSpan,

Action action)
 {
 Task.Run(async () =>
 {
 await Task.Delay(timeSpan);
 action.Invoke();
 });
 }
}

In the following sections, you will be looking at code examples rather

than implementing them directly. This is aimed at providing some

comparisons to allow you to find out what will be a good fit for you as you

build your applications and grow as a cross-platform developer. At the end

of the chapter, you will take your chosen approach and add it into your

application so you can see the final result of your ClockWidget.

�Model View ViewModel (MVVM)
Model View ViewModel is a software design pattern that focuses on

separating the user interface (View) from the business logic (Model). It

achieves this with the use of a layer in between (ViewModel). MVVM

allows a clean separation of presentation and business logic. Figure 4-2

shows the clean separation between the components of the MVVM

architecture.

Chapter 4 An Architecture to Suit You

76

Figure 4-2.  An overview of the MVVM pattern

The result of creating this separation between UI and business logic

brings several benefits:

•	 Makes unit testing easier

•	 Allows for Views to be swapped out or even rewritten

without impacting the other parts

•	 Encourages code reuse

•	 Provides the ability to separate UI development from

the business logic development

A key part to any design pattern is knowing where to locate parts of

your code to make it fit and abide by the rules. Let’s take a deeper look at

each of the three key parts of this pattern.

�Model
The Model is where you keep your business logic. It is typically loaded

from a database/web service among many other things.

For your business logic, you are going to rely on the Scheduler class

that you created earlier in the “Prerequisites” section of this chapter.

Chapter 4 An Architecture to Suit You

77

�View
The View defines the layout and appearance of the application. It is what

the user will see and interact with. In .NET MAUI, a View is typically

written in XAML where possible, but there will be occasions when logic

in the code-behind will need to be written. You will learn this later in this

chapter; you don’t have to use XAML at all, so if you don’t feel XAML is

right for you, fear not.

A View in .NET MAUI is typically a ContentPage or an implementation

that will inherit from ContentPage or ContentView. You use a ContentPage

if you want to render a full page in your application (basically a view that

will fill the application). You use a ContentView for something smaller

(like a widget!). For your implementation, you will be inheriting from a

ContentView.

I discussed in Chapter 2 that the majority of XAML files come with an

associated C# file. A XAML-based view is no exception to this rule. With

this in mind, let’s take a look at the contents you need to place in each of

the files.

�XAML

<?xml version="1.0" encoding="utf-8" ?>
<ContentView
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.ClockWidget">
 <ContentView.BindingContext>
 <viewmodels:ClockWidgetViewModel />
 </ContentView.BindingContext>
 <Label Text="{Binding Time}"

Chapter 4 An Architecture to Suit You

78

 FontSize="80"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
</ContentView>

�C# (Code-Behind)

The following code will have already been created for you by the .NET

MAUI template. It is included for reference.

namespace WidgetBoard;
public partial class ClockWidget : ContentView
{
 public ClockWidget()
 {
 InitializeComponent();
 }
}

The InitializeComponent method call above is essential when

building XAML-based views. It results in the XAML being loaded and

parsed into an instance of the controls that have been defined in the

XAML file.

�ViewModel
The ViewModel acts as the bridge between the View and the Model. You

expose properties and commands on the ViewModel that the View will

bind to. To make a comparison to building applications with just code-

behind, we could state that properties basically map to references of

controls and commands are events. A binding provides a mechanism for

both the View and ViewModel to send and receive updates.

Chapter 4 An Architecture to Suit You

79

For your ViewModel to notify the View that a property has changed

and therefore the View will refresh the value displayed on screen, you

need to make use of the INotifyPropertyChanged interface. This offers

a single PropertyChanged event that you must implement and ultimately

raise when your data-bound value has changed. This is all handled by the

XAML binding engine, which you will look at in much more detail in the

next chapter. Let’s create your ViewModel class and then break down what

is going on.

public class ClockWidgetViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private readonly Scheduler scheduler = new();
 private DateTime time;

 public DateTime Time
 {
 get
 {
 return time;
 }
 set
 {
 if (time != value)
 {
 time = value;
 �PropertyChanged?.Invoke(this, new Property

ChangedEventArgs(nameof(Time)));
 }
 }
 }

Chapter 4 An Architecture to Suit You

80

 public ClockWigetViewModel()
 {
 SetTime(DateTime.Now);
 }

 public void SetTime(DateTime dateTime)
 {
 Time = dateTime;
 scheduler.ScheduleAction(
 TimeSpan.FromSeconds(1),
 () => SetTime(DateTime.Now));
 }
}

You have

•	 Created a class called ClockWidgetViewModel

•	 Implemented the INotifyPropertyChanged interface

•	 Added a property that when set will check whether

its value really has changed, and if it has, raise the

PropertyChanged event with the name of the property

that has changed

•	 Added a method to set the Time property and repeat

every second so that the widget looks like a clock

counting

�Model View Update (MVU)
Model View Update is a software design pattern for building interactive

applications. The concept originates from the Elm programming language.

As the name suggests, there are three key parts to MVU:

Chapter 4 An Architecture to Suit You

81

•	 Model: This is the state of your application.

•	 View: This is a visual representation of your state.

•	 Update: This is a mechanism to update your state.

Figure 4-3 shows how each of these components relates and interacts

with each other.

Figure 4-3.  An overview of the MVU pattern

This pattern offers several benefits:

•	 Clearly defined rules around where state is allowed to

be updated

•	 Ease of testing

A key part to any design pattern is knowing where to locate parts of

your code to make it fit and abide by the rules. Let’s take a deeper look at

each of the three key parts of this pattern.

�Getting Started with MauiReactor
It is worth noting that the MVU library that we will be using is not directly

provided by Microsoft; instead, it is a community-based project called

MauiReactor. The project can be found on GitHub at https://github.
com/adospace/reactorui-maui.

Chapter 4 An Architecture to Suit You

https://github.com/adospace/reactorui-maui
https://github.com/adospace/reactorui-maui

82

First, you must install the MauiReactor project templates. To do this,

open a terminal window and run the following command.

�macOS

	 1.	 Open the Terminal application.

	 2.	 Enter the following command and then press return:

dotnet new –-install Reactor.Maui.TemplatePack

�Windows

	 1.	 Open the Command Prompt application.

	 2.	 Enter the following command and then press return:

dotnet new –-install Reactor.Maui.TemplatePack

This will install the template so that you can create a new project.

Sadly, this is different enough to the WidgetBoard project that you have

been working with so far.

Next, you need to create the project. This is again done via the terminal

for now:

dotnet new maui-reactor-startup -–name WidgetBoard.Mvu

This will create a new project that you can start modifying.

�Overview of the MVU Project Format
Let’s have a quick overview of the project structure of the MVU-based

project that was just created in order to become familiar. If you open the

project you just created in Visual Studio or Rider, you will notice that

Chapter 4 An Architecture to Suit You

83

the structure looks similar to a standard .NET MAUI project. One key

difference is that there are very few (only two) XAML files; the bulk of the

applications written in MVU will be through using C#.

The next key detail is how a View is represented. Views in MauiReactor

are referred to as Components; the aim of building components is to create

small reusable components that can make up the building blocks on an

application or multiple applications. The Views are considered immutable

in MVU, which means they will never update; instead, when the state

(model) is updated, the view will be redrawn in order to visually represent

the changes to the state. With this detail in mind, it is essential to build

small components in order to limit the amount of the application that

needs to be redrawn when some state changes.

Let’s proceed to making some changes in order to see MVU in action in

.NET MAUI. The template will have created a single MainPage.cs file under

the /Pages folder. This is the file that we are going to want to modify for the

purpose of creating a ClockWidget.

�Adding Your MVU Implementation
Go ahead and open the MainPage.cs file and make the following changes:

class MainPage : Component
{
 public override VisualNode Render()
 => ContentPage(
 new ClockWidget()
);
}

The result of the above change will be to present a page with a single

component inside.

Chapter 4 An Architecture to Suit You

84

Finally, go ahead and create your ClockWidget class:

public class ClockState
{
 public DateTime Time { get; set; }
}

public class ClockWidget : Component<ClockState>
{
 public override VisualNode Render()
 {
 return new VerticalStackLayout
 {
 Label(State.Time.ToString())
 .FontSize(80)
 .HCenter()
 .VCenter(),

 �new Timer(interval: TimeSpan.FromSeconds(1), () =>
SetState(s => s.Time = DateTime.Now))

 .IsEnabled(true)
 };
 }
}

Now that you have added a load of code, let’s summarize what you

have done.

•	 You have created your state (model) class ClockState.

•	 You have created a new component named

ClockWidget.

•	 You have defined your state type as ClockState.

Chapter 4 An Architecture to Suit You

85

•	 You have initialized (known as init in the MVU

pattern) your model field clock.

•	 You have defined the visuals of your component with

the Render() function.

•	 You have added a Timer component that will update

your state every second with the current date/time.

Note that there are two common scenarios when an update is called:

when there is user interaction (e.g., a click/tap of a button) and around

asynchronous background work. Your example here applies to the second

scenario.

As I mentioned earlier, we can see how our clock widget can be

achieved using MVU; this is a relatively simple example so I would strongly

recommend checking out the more in-depth examples provided by the

MauiReactor team at https://github.com/adospace/reactorui-maui.

�XAML vs. C# Markup
XAML has proven to be a big part of building application UIs in .NET

MAUI, but I want to make it clear that you do not have to use it. So if

like some friends and colleagues, the verbosity of XAML makes you feel

queasy, there is a solution!

Anything that you can create in XAML can ultimately be created in

C#. Furthermore, there are ways to improve on the readability of the C#

required to build UIs.

Some benefits of building user interfaces solely with C# are

•	 A single file for a view. No pairing of .xaml.cs

and .xaml files.

•	 Better refactoring options so renaming properties or

commands in XAML won’t update the C#.

Chapter 4 An Architecture to Suit You

https://github.com/adospace/reactorui-maui

86

Let’s work through how you can build your ClockWidget in C# in all its

verbosity, and then I will show how you can simplify it using C# Markup. (I

must add this is an open source package that you need to bring in.) Also,

these examples are still built using MVVM.

�Plain C#
As mentioned, anything you can build in XAML can also be built in C#.

The following code shows how the exact same XAML definition of your

ClockWidget can be built using just C#:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public class ClockWidget : ContentView
{
 public ClockWidget()
 {
 BindingContext = new ClockWidgetViewModel();
 var label = new Label
 {
 FontSize = 80,
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 };
 label.SetBinding(
 Label.TextProperty,
 nameof(ClockWidgetViewModel.Time));
 Content = label;
 }
}

Chapter 4 An Architecture to Suit You

87

The code above does the following things:

•	 Creates a single file representing your ClockWidget

•	 Points your widget’s BindingContext to the

ClockWidgetViewModel

•	 Creates a label and sets its Text property to be bound to

the view model’s Time property

•	 Assigns the label to the content of the view

�C# Markup
I have recently come to appreciate the value of being able to fluently

build UIs. I don’t tend to do it often because I personally feel comfortable

building with XAML or perhaps it is Stockholm syndrome kicking in ☺

(I’ve been working with XAML for well over ten years now). When I do, it

needs to be as easy to read and build as possible given it is not something I

do often.

As a maintainer on the .NET MAUI Community Toolkit, one of the

packages we provide is CommunityToolkit.Maui.Markup. It provides a set

of extension methods and helpers to build UIs fluently.

using CommunityToolkit.Maui.Markup;
using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public class ClockWidget : ContentView
{
 public ClockWidget()
 {
 BindingContext = new ClockWidgetViewModel();
 Content = new Label()

Chapter 4 An Architecture to Suit You

88

 .Font(size: 80)
 .CenterHorizontal()
 .CenterVertical()
 �.Bind(Label.TextProperty, getter: static

(ClockWidgetViewModel viewModel) =>
viewModel.Time);

 }
}

This code performs the same steps as the plain C# example; however,

the code is much easier to read. I am sure you can imagine that when the

complexity of the UI increases, this fluent approach can really start to

benefit you.

�Chosen Architecture for This Book
Throughout this book, we will be using the MVVM-based architecture

while building the UI through XAML.

My reasons for choosing MVVM are as follows:

•	 I have spent the last 10+ years using this architecture so

it certainly feels natural to me.

•	 It has been a very common way of building applications

over the past decade so there is an abundance of

resources online to assist in overcoming issues

around it.

•	 It is a common pattern in all Microsoft products and

has a proven track record.

Chapter 4 An Architecture to Suit You

89

Now that I have covered the various architecture options and decided

on using MVVM, let’s proceed to adding in the specific Views and

ViewModels so that they can be used inside the application. Then I will

show how to start simplifying the implementation so that the code really

only needs to include the core logic by avoiding having to add a lot of the

boilerplate code.

�Adding the ViewModels
First, add a new folder to your project.

•	 Right-click the WidgetBoard project.

•	 Select Add ➤ New Folder.

•	 Enter the name ViewModels.

•	 Click Add.

This folder will house your application’s view models. Let’s proceed to

adding the first one.

�Adding IWidgetViewModel

The first item you need to add is an interface. It will represent all widget

view models that you create in your application.

•	 Right-click the ViewModels folder.

•	 Select Add ➤ New Item.

•	 Select the Interface type.

•	 Enter the name IWidgetViewModel.

•	 Click Add.

Chapter 4 An Architecture to Suit You

90

Modify this file to the following:

namespace WidgetBoard.ViewModels;
public interface IWidgetViewModel
{
 int Position { get; set; }
 string Type { get; }
}

�Adding BaseViewModel

This will serve as the base class for all of your view models so that you only

have to write some boilerplate code once. Don’t worry; you will see how to

optimize this even further!

•	 Right-click the ViewModels folder.

•	 Select Add ➤ Class.

•	 Enter the name BaseViewModel.

•	 Click Add.

You can replace the contents of the class file with the following code:

namespace WidgetBoard.ViewModels;

public abstract class BaseViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler? PropertyChanged;

 �protected void OnPropertyChanged([CallerMemberName] string
propertyName = "")

 {
 �PropertyChanged?.Invoke(this, new PropertyChangedEvent

Args(propertyName));
 }

Chapter 4 An Architecture to Suit You

91

 �protected bool SetProperty<TValue>(ref TValue backingField,
TValue value, [CallerMemberName] string propertyName = "")

 {
 �if (Comparer<TValue>.Default.Compare(backingField,

value) == 0)
 {
 return false;
 }
 backingField = value;
 OnPropertyChanged(propertyName);
 return true;
 }
}

You should be familiar with the first line inside the class:

public event PropertyChangedEventHandler PropertyChanged;

This is the event definition that you must add as part of implementing

the INotifyPropertyChanged interface, and it serves as the mechanism for

your view model to update the view.

The next method provides a mechanism to easily raise the

PropertyChanged event:

protected void OnPropertyChanged([CallerMemberName] string
propertyName = "")
{
 PropertyChanged?.Invoke(this, new
PropertyChangedEventArgs(propertyName));
}

The OnPropertyChanged method can be called with or without

passing in a value for propertyName. By passing a value in, you are

indicating which property name on your view model has changed.

Chapter 4 An Architecture to Suit You

92

If you do not, then the [CallerMemberName] attribute indicates that the

name of the caller will be used. Don’t worry if this is a little unclear right

now; it will become much clearer when you add your property into your

ClockWidgetViewModel so just bear with me.

The final method adds a lot of value:

protected bool SetProperty<TValue>(
 ref TValue backingField,
 TValue value,
 [CallerMemberName] string propertyName = "")
{
 �if (Comparer<TValue>.Default.Compare(backingField,

value) == 0)
 {
 return false;
 }
 backingField = value;
 OnPropertyChanged(propertyName);
 return true;
}

The SetProperty method does the following:

•	 Allows you to call it from a property setter, passing in

the field and value being set.

•	 Checks whether the value is different from the backing

field, basically determining whether the property has

really changed.

•	 If it has changed, it fires the PropertyChanged event

using your new OnPropertyChanged method.

•	 Returns a Boolean indicating whether the value did

really change. This can be really useful when needing

to update other properties or commands!

Chapter 4 An Architecture to Suit You

93

This concludes the base view model implementation. Let’s proceed to

using it as the base for the ClockWidgetViewModel to really appreciate the

value it is providing.

�Adding ClockWidgetViewModel

Let’s add a new class file into your ViewModels folder as you did for the

BaseViewModel.cs file. Call this file ClockWidgetViewModel and modify

the contents to the following:

using System;
using System.ComponentModel;

namespace WidgetBoard.ViewModels;

public class ClockWidgetViewModel : BaseViewModel,
IWidgetViewModel
{
 private readonly Scheduler scheduler = new();
 private DateTime time;

 public DateTime Time
 {
 get => time;
 set => SetProperty(ref time, value);
 }

 public int Position { get; set; }
 public string Type => "Clock";

 public ClockWidgetViewModel()
 {
 SetTime(DateTime.Now);
 }

Chapter 4 An Architecture to Suit You

94

 private void SetTime(DateTime dateTime)
 {
 Time = dateTime;
 scheduler.ScheduleAction(
 TimeSpan.FromSeconds(1),
 () => SetTime(DateTime.Now));
 }
}

The above code should be familiar. You saw it when reviewing

MVVM. The optimization made here is to reduce the size of the Time

property down to just 5 lines where the original example was 16 lines

of code.

�Adding Views
First, add a new folder to your project.

•	 Right-click the WidgetBoard project.

•	 Select Add ➤ New Folder.

•	 Enter the name Views.

•	 Click Add.

This folder will house your application’s views. Let’s proceed to adding

your first one.

�Adding IWidgetView

The first item you need to add is an interface to represent all widget view

models that you create in your application.

•	 Right-click the Views folder.

•	 Select Add ➤ New Item.

Chapter 4 An Architecture to Suit You

95

•	 Select the Interface type.

•	 Enter the name IWidgetView.

•	 Click Add.

Modify the contents of this file to the following:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public interface IWidgetView
{
 int Position
 {
 get => WidgetViewModel.Position;
 set => WidgetViewModel.Position = value;
 }
 IWidgetViewModel WidgetViewModel { get; set; }
}

�Adding ClockWidgetView

The next item you need to add is a ContentView. This is the first time you

are doing this, so use the following steps:

•	 Right-click the Views folder.

•	 Select Add ➤ New Item.

•	 Select the .NET MAUI tab.

•	 Select the .NET MAUI ContentView (XAML) option.

•	 Enter the name ClockWidgetView.

•	 Click Add.

Chapter 4 An Architecture to Suit You

96

Observe that two new files have been added to your project:

ClockWidgetView.xaml and ClockWidgetView.xaml.cs. You may

notice that the ClockWidgetView.xaml.cs file is hidden in the Solution

Explorer panel and that you need to expand the arrow to the left of the

ClockWidgetView.xaml file.

Let’s update both files to match what was in the original examples.

Open the ClockWidgetView.xaml file and modify the contents to the

following:

<?xml version="1.0" encoding="utf-8" ?>
<Label
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Views.ClockWidgetView"
 FontSize="80"
 VerticalOptions="Center"
 HorizontalOptions="Center"
 x:DataType="viewModels:ClockWidgetViewModel"
 Text="{Binding Time}">
</Label>

Open the ClockWidgetView.xaml.cs file and modify the contents to

the following:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class ClockWidgetView : Label, IWidgetView
{
 public ClockWidgetView()
 {
 InitializeComponent();

Chapter 4 An Architecture to Suit You

97

 WidgetViewModel = new ClockWidgetViewModel();
 BindingContext = WidgetViewModel;
 }
 public IWidgetViewModel WidgetViewModel { get; set; }
}

This completes the work to add the ClockWidget into your code base.

Now you need to modify your application so that you can see this widget

in action!

�Viewing Your Widget
In order to view your widget in your application, you need to make some

changes to the MainPage.xaml and MainPage.xaml.cs files that were

generated when you first created your project.

�Modifying MainPage.xaml

Simply replace the contents of the file with the following:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:views="clr-namespace:WidgetBoard.Views"
 x:Class="WidgetBoard.MainPage">
 <views:ClockWidgetView />
</ContentPage>

The original file had a basic example that ships with the .NET MAUI

template, but it wasn’t of much use in this application.

Chapter 4 An Architecture to Suit You

98

�Modifying MainPage.xaml.cs

You need to modify the contents of this file because you deleted some

controls from the MainPage.xaml file. If you don’t update this file, Visual

Studio will report compilation errors. You can replace the entire contents

of the MainPage.xaml.cs file with the following to remove references to the

controls you deleted from the XAML file:

namespace WidgetBoard;

public partial class MainPage : ContentPage
{
 public MainPage()
 {
 InitializeComponent();
 }
}

This concludes the changes that you need to make in your application.

Let’s see what your application looks like now!

�Taking the Application for a Spin

If you build and run your application just like you learned to in Chapter 2,

you can see that it renders the ClockWidget just as I originally designed.

Figure 4-4 shows the clock widget rendered in the application running

on macOS.

Chapter 4 An Architecture to Suit You

99

Figure 4-4.  The clock widget rendered in the application running
on macOS

You have looked at ways to optimize your code base when using MVVM,

but I would like to provide some further details on how you can leverage the

power of the community in order to further improve your experience.

�MVVM Enhancements
There are two key parts I will cover regarding how you can utilize existing

packages to reduce the amount of code you are required to write.

�MVVM Frameworks

There are several MVVM frameworks that can expand on this by providing

a base class implementation for you with varying levels of other extra

features. To list a few:

•	 CommunityToolkit.Mvvm

•	 FreshMVVM

•	 Prism

•	 ReactiveUI

Chapter 4 An Architecture to Suit You

100

These packages will ultimately provide you with a base class very

similar to the BaseViewModel class that you created earlier. For example,

the Prism library provides the BindableBase class that you could use. It

offers yet another optimization in terms of less code that you need to write

and ultimately maintain.

You can go a step further, but you need to believe.

�Magic

Yes, that’s right: magic is real! These approaches involve auto-generating

the required boilerplate code so that we as developers do not have to do it.

There are two main packages that offer this functionality. They provide it

through different mechanisms, but they work equally well.

•	 Fody: IL generation, https://github.com/Fody/Home

•	 CommunityToolkit.Mvvm: Source generators (yes, this

gets a second mention), https://learn.microsoft.
com/dotnet/communitytoolkit/mvvm/

In the past, I was skeptical of using such packages. I felt like I was

losing control of parts that I needed to hold on to. Now I can appreciate

that I was naïve, and this is impressive.

Let’s look at how these packages can help to further reduce the

code. This example uses CommunityToolkit.Mvvm, which provides the

ObservableObject base class and a wonderful way of adding attributes

([ObservableProperty]) to the fields you wish to trigger PropertyChanged

events when their value changes. This will then generate a property with

the same name as the field but with a capitalized first character, so time

becomes Time.

public partial class ClockWidgetViewModel : ObservableObject
{
 [ObservableProperty]
 private DateTime time;

Chapter 4 An Architecture to Suit You

https://github.com/Fody/Home
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/

101

 public ClockWigetViewModel()
 {
 SetTime(DateTime.Now);
 }

 public void SetTime(DateTime dateTime)
 {
 Time = dateTime;
 scheduler.ScheduleAction(
 TimeSpan.FromSeconds(1),
 () => SetTime(DateTime.Now));
 }
}

That’s 17 lines down to 2 from the original example! The part that I

really like is that it reduces all the noise of the boilerplate code so there is a

bigger emphasis on the code that we need to write as developers.

You may have noticed that you are still referring to the Time property

in the code but you haven’t supplied the definition for this property. This

is where the magic comes in! If you right-click the Time property and select

Go to Definition…, it will open the following source code so you can view

what the toolkit has created for you:

// <auto-generated/>
#pragma warning disable
#nullable enable
namespace WidgetBoard.ViewModels
{
 partial class ClockWidgetViewModel
 {
 /// <inheritdoc cref="time"/>

Chapter 4 An Architecture to Suit You

102

 �[global::System.CodeDom.Compiler.GeneratedCode
("CommunityToolkit.Mvvm.SourceGenerators.
ObservablePropertyGenerator", "8.0.0.0")]

 �[global::System.Diagnostics.CodeAnalysis.
ExcludeFromCodeCoverage]

 public global::System.DateTime Time
 {
 get => time;
 set
 {
 �if (!global::System.Collections.Generic.

EqualityComparer<global::System.DateTime>.
Default.Equals(time, value))

 {
 OnTimeChanging(value);
 �OnPropertyChanging(global::Community

Toolkit.Mvvm.ComponentModel.__Internals.__
KnownINotifyPropertyChangingArgs.Time);

 time = value;
 OnTimeChanged(value);
 �OnPropertyChanged(global::CommunityTool

kit.Mvvm.ComponentModel.__Internals.__
KnownINotifyPropertyChangedArgs.Time);

 }
 }
 }
 �/// <summary>Executes the logic for when <see

cref="Time"/> is changing.</summary>
 �[global::System.CodeDom.Compiler.GeneratedCode

("CommunityToolkit.Mvvm.SourceGenerators.
ObservablePropertyGenerator", "8.0.0.0")]

Chapter 4 An Architecture to Suit You

103

 �partial void OnTimeChanging(global::System.
DateTime value);

 �/// <summary>Executes the logic for when
<see cref="Time"/> just changed.</summary>

 �[global::System.CodeDom.Compiler.GeneratedCode
("CommunityToolkit.Mvvm.SourceGenerators.
ObservablePropertyGenerator", "8.0.0.0")]

 �partial void OnTimeChanged(global::System.
DateTime value);

 }
}

You can see that the generated source code looks a little noisy, but it

does in fact generate the property you need. View the section highlighted

in bold above.

I have only really scratched the surface regarding the functionality

that the CommunityToolkit.Mvvm offers. I strongly urge you to refer

to the documentation at https://learn.microsoft.com/dotnet/
communitytoolkit/mvvm/ to learn how it can further aid your application

development because this will not be looked into any deeper in this book

so we can focus on the fundamentals.

�Summary
I hope I have made it clear that there is no single right way to do things or

build applications. You should pick and choose what approaches will best

suit your environment. With this point in mind, the goal of this chapter was

to give you a good overview of several different approaches to architecting

your application. There are always a lot of opinions floating around to

indicate which architectures people prefer, but I strongly urge you to

evaluate which will help you to achieve your goals best.

Chapter 4 An Architecture to Suit You

https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/
https://learn.microsoft.com/dotnet/communitytoolkit/mvvm/

104

In this chapter, you have

•	 Learned about the different possibilities you have to

architect your applications

•	 Decided on what architecture to use

•	 Walked through a concrete example by creating the

ClockWidget

•	 Learned how to further optimize your implementation

using NuGet packages

In the next chapter, you will

•	 Create and apply an icon in your application

•	 Add some placeholder pages and view models

•	 Fill your first page with some UI and set up bindings to

the view model

•	 Explore data binding and its many uses

•	 Gain an understanding of XAML

•	 Learn about the possible layouts you can use to group

other controls

•	 Gain an understanding of Shell and apply this to

building your application’s structure

•	 Apply the Shell navigation to allow you to navigate

•	 Build your flyout menu

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch04.

Chapter 4 An Architecture to Suit You

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch04
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch04

105© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_5

CHAPTER 5

User Interface
Essentials

�Abstract
In this chapter, you are going to investigate the fundamental parts of

building a .NET MAUI application. You are going to apply an icon and

splash screen, add in some pages and their associated view models, and

configure some bindings between your page and the view model. You will

also gain an understanding of what XAML is and what it has to offer as you

build the pages of your application.

�Prerequisites
You need to do some setup before you can jump into using Shell. If Shell is

still feeling like an unknown concept, fear not. I will be covering it a little

bit later in this chapter under the “Shell” section.

Let’s go ahead and add the following folders to your project.

https://doi.org/10.1007/979-8-8688-1189-0_5#DOI

106

�Models
This will house all of your Model classes. If you recall from Chapter 4, these

are where some of your business logic is located. In your Models folder, you

need to create one class.

•	 Right-click the Models folder.

•	 Select Add ➤ New Class.

•	 Click Add.

�Board.cs

This will serve as a base class for the layout options you provide. In

this book, you will only be building fixed layout boards, but I wanted to

lay some groundwork so if you are feeling adventurous, you can go off

and build alternative layout options without having to restructure the

application. In fact, I would love to hear where you take it!

Your fixed layout will offer the user of the app the ability to choose a

number of rows and columns and then position their widgets in them.

namespace WidgetBoard.Models;

public class Board
{
 public string Name { get; init; } = string.Empty;
 public int NumberOfColumns { get; init; }
 public int NumberOfRows { get; init; }
}

This is the first time that we have used the init keyword in this book.

I wanted to explain its use in case you are not familiar with it; the init

keyword allows us to define a property that can be set only when a new

instance is initialized. This means that the following is allowed:

Chapter 5 User Interface Essentials

107

var board = new Board
{
 Name = "Fixed Board";
 NumberOfColumns = 3;
 NumberOfRows = 3;
};

To highlight the value of the init keyword, the following code will

generate three compiler errors, one compiler per property that hasn’t been

assigned a value.

var board = new Board();

�Pages
This will house the pages in your application. I am distinguishing between

a page and a view because they do behave differently in .NET MAUI. You

can think of a page as a screen that you are seeing whereas a view is a

smaller component. A page can contain multiple views.

Let’s go ahead and create the following files under the Pages folder.

The following steps show how to add the new pages.

•	 Right-click the Pages folder.

•	 Select Add ➤ New Item.

•	 Select the .NET MAUI tab.

•	 Select .NET MAUI ContentPage (XAML).

•	 Click Add.

Chapter 5 User Interface Essentials

108

�BoardDetailsPage

This is the page that lets you both create and edit your boards. For now,

you will not touch the contents of this file. Note that you should see

BoardDetailsPage.xaml and BoardDetailsPage.xaml.cs files created.

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method just before the

return builder.Build(); line.

builder.Services.AddTransient<BoardDetailsPage>();

�ViewModels
This houses your ViewModels that are the backing for both your Pages and

Views. You created this folder in the previous chapter, but you need to add

a number of classes. The following steps show how to add the new pages:

•	 Right-click the ViewModels folder.

•	 Select Add ➤ New Class.

•	 Click Add.

�BoardDetailsPageViewModel

This serves as the view model for the BoardDetailsPage file you created.

namespace WidgetBoard.ViewModels;

public class BoardDetailsPageViewModel : BaseViewModel
{
}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method as you did above.

builder.Services.AddTransient<BoardDetailsPageViewModel>();

Chapter 5 User Interface Essentials

109

You should start to notice a common pattern with the creation of these

files and the need to add them to the MauiProgram.cs file. This is to allow

you to fully utilize the dependency injection provided by the framework,

which you learned about in Chapter 3.

This concludes the prerequisite work required for this chapter, so let’s

proceed to covering the user interface essentials.

�App Icons
Every application needs an icon, and for many people, this will be how

they obtain their first impression. Thankfully these days device screens

allow for bigger icon sizes and therefore more detail to be included

in them.

As with general image resources, each platform requires different sizes

and many more combinations to be provided. For example, iOS expects

the following:

•	 Five different sizes of the app icon

•	 Three different sizes for the Spotlight feature

•	 Three different sizes for Notifications

•	 Three different sizes for Settings

That’s up to 14 different image sizes required just for your application

icon on iOS alone. See https://developer.apple.com/design/human-
interface-guidelines/ios/icons-and-images/app-icon/.

.NET MAUI manages the process of generating all the required images

for you. All you need to do is provide an SVG image file. Since SVGs are

vector based, they can scale to each required size.

Chapter 5 User Interface Essentials

https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/
https://developer.apple.com/design/human-interface-guidelines/ios/icons-and-images/app-icon/

110

�Adding Your Own Icon
Figure 5-1 shows the icon that you will be using for your application. You

can grab a copy of the files that you will be using from https://github.
com/bijington/introducing-dotnet-maui/tree/main/chapter05 and

place them in the Resources/AppIcon folder. You should notice that they

replace two existing files.

Figure 5-1.  Your application icon

If you look in the contents of your project file, you will see the

following entry:

<MauiIcon Include="Resources\AppIcon\appicon.svg" />

This tells the tooling to use the file appicon.svg and convert it into all

the required sizes for each platform when building. Note you only want

one MauiIcon in your project file. If you have multiple, the first one will

be used.

Chapter 5 User Interface Essentials

https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05
https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05

111

You do not need to replace the above entry as the file you should

have downloaded should have the name appicon.svg. If the file name is

different, either rename it or update the name in the project file.

�Platform Differences
It is worth noting that some platforms apply different rules to app icons

and also can provide rather different outputs.

�Android

App icons on Android can take many different shapes due to the different

device manufacturers and their own flavor of the Android operating

system. To cater for this, Google introduced the adaptive icon. This allows

a developer to define two layers in their icon:

•	 The background: This is typically a single color or

consistent pattern. It is the appicon.svg file that you

downloaded.

•	 The foreground: This includes the main detail. It is the

appiconfig.svg file that you downloaded.

.NET MAUI allows you to support the adaptive icon using the

IncludeFile and the ForegroundFile properties on the MauiIcon

element. You can see the IncludeFile is already defined in your project.

This represents the background. You can split your application icon into

two parts and then provide the detail to the ForegroundFile. Note that this

can be applied to all platforms and is my recommended way to ship an

application icon.

Chapter 5 User Interface Essentials

112

�iOS and macOS

Apple does not allow for any transparency in an app icon. You can either

make sure that you supply an image with no transparent pixels or you can

use the Color property on the MauiIcon element, which will fill in any

transparent pixels with that defined color.

�Splash Screen
A splash screen is the first thing a user sees when they start your

application. It gives you as a developer a way of showing the user

something while the application is launching. Once everything has

finished loading, the splash screen will be hidden and your main page will

be shown.

In a similar manner to how the app icon is managed, the splash screen

also has an entry in the project file and can generate a screen based on an

SVG file. In fact, you will be using the same image to save effort.

<MauiSplashScreen Include="Resources\Splash\splash.svg"
Color="#512BD4" BaseSize="128,128" />

Note that splash screens built in this manner must be static. You can’t

have any animations running to show progress.

The Color property enables you to define a background color for the

splash screen.

I have designed a splash screen image that you are free to use in your

application, you can find a copy at https://github.com/bijington/
introducing-dotnet-maui/tree/main/chapter05/splash and place

them in the Resources/Splash folder.

Chapter 5 User Interface Essentials

https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05/splash
https://github.com/bijington/introducing-dotnet-maui/tree/main/chapter05/splash

113

Figure 5-2.  Your application splash screen

�XAML
As a .NET MAUI developer, you will hear XAML mentioned many times;

XAML stands for eXtensible Application Markup Language. It is an XML-

based language used for defining user interfaces. It originates from WPF

and Silverlight, but the .NET MAUI version has its differences.

There are two different types of XAML files that you will encounter

when building your application:

•	 A ResourceDictionary: This is a single file that

contains resources that can easily be used throughout

your application. Resources/Styles/Styles.xaml

is a perfect example of this. The Styles.xaml file is a

default set of styles that is provided when you create

a new .NET MAUI application. If you wish to modify

some built-in styling, this is a very good place to do so.

•	 A View-based file: This contains both a .xaml and

.xaml.cs file. They are paired together using the

partial class keyword.

Chapter 5 User Interface Essentials

114

When dealing with this second item, you have to make sure that the

InitializeComponent line is called inside the constructor; otherwise,

the XAML will not be interpreted correctly, and you will see an

exception thrown.

It is worth noting that XAML does not provide a rich set of features

like C# does, and for this reason, there is almost always a xaml.cs file that

goes alongside the XAML file. This C# file provides the ability to use the

rich feature set of the C# language when XAML does not. For example,

handling a button interaction event would have to be done within the C#

code file.

�Dissecting a XAML File
In the “Prerequisites” section of this chapter, you created the

BoardDetailsPage.xaml file. Now you are going to modify it and add some

meaningful content so you can start to see your application take shape.

The code you should see in this file is shown below:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="WidgetBoard.Pages.BoardDetailsPage"
 Title="BoardDetailsPage">
 <VerticalStackLayout>
 <Label
 Text="Welcome to .NET MAUI!"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 </VerticalStackLayout>
</ContentPage>

Chapter 5 User Interface Essentials

115

If you break this down into small chunks, you can start to understand

not only what makes up the UI of your application but also some of the

fundamentals of how XAML represents it.

The root element is a ContentPage. As mentioned, a typical view in

.NET MAUI is either a ContentPage or ContentView. As the name implies,

it is a page that presents its content, and this will be a single view as its

content.

As mentioned, XAML is an XML-based language, and there are the

following key parts to understanding XAML:

	 1.	 Properties are set by attributes on your element, so

<Label Text="Welcome to .NET MAUI!" />

is effectively the same as writing

new Label
{
 Text = "Welcome to .NET MAUI!"
};

	 2.	 XAML represents the visual hierarchy in the file

structure. You can work out that ContentPage

has a child of VerticalStackLayout and it has a

child of Label. This can be especially helpful. A

complex XAML file will result in a complex visual

tree, and you want to try your best to avoid this

because the greater the complexity results in poorer

performance because the device will ultimately have

to render more things on screen.

Chapter 5 User Interface Essentials

116

	 3.	 The xmlns tag works like a using statement in C#.

This allows you to refer to other functionality that

might not be available out of the box. For example,

you can add the line xmlns:views="clr-
namespace:WidgetBoard.Views" and it is the

equivalent of adding using WidgetBoard.Views; in

a C# file. This allows you to refer to the views in your

code base.

The content of your ContentPage in your XAML is a

VerticalStackLayout. I will cover layouts a little bit later in this chapter,

but as a very brief overview, they allow you to have multiple child views as

content and therefore open up the possibilities of creating your UIs. It is

worth noting that a ContentPage can only have a single child, which makes

layouts really important controls for use when building user interfaces.

Now that you have covered some of the key concepts around XAML,

let’s go ahead and start building your application’s first page.

�Building Your First XAML Page
I always like to work with a clear definition of what needs to be achieved so

let’s define what your page needs to do. It needs to do the following:

•	 Allow the user to create a new board.

•	 Fit on a variety of screen sizes.

•	 Allow the user to provide a name for the board.

•	 Allow the user to choose the layout type.

•	 Apply any valid properties for the specific layout

type chosen.

Chapter 5 User Interface Essentials

117

Now that you know what needs to be achieved, let’s go ahead and do

it. You need to delete the existing contents of the page and replace them

with a Border. A Border is similar to a ContentView in that it can only have

a single child, but it offers you some extra properties that allow you to

provide a nice looking UI. In particular, you care about the StrokeShape

and Stroke properties. You may notice that you are not actually setting

these properties in the XAML and you would be correct! There are two

main reasons for this:

•	 You have suitable defaults defined in the Resources/
Styles/Styles.xaml file that was created for you. Note

that if you want to override these, it’s perfectly fine. I

will be covering this a little bit later in this chapter in

the “Styling” section.

•	 It is considered good practice to only define the

properties that you need to supply, which is basically

anything that changes from the defaults. While the

XAML compiler does a decent job of generating a

UI that is defined at compile time, some bits are still

potentially interpreted at runtime and this has a

performance impact.

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
 �xmlns="http://schemas.microsoft.com/

dotnet/2021/maui"
 �xmlns:x="http://schemas.microsoft.com/

winfx/2009/xaml"
 x:Class="WidgetBoard.Pages.BoardDetailsPage">
 <Border
 MinimumWidthRequest="300"

Chapter 5 User Interface Essentials

118

 HorizontalOptions="Center"
 VerticalOptions="Center"
 Padding="0">
 </Border>
</ContentPage>

The most important parts of the properties that you are setting are the

HorizontalOptions and VerticalOptions. They allow you to define where

in the parent this view will be displayed. By default, a view will fill its

parent’s content, but you are going to make it float in the center. The main

reason is so it will stay there regardless of the screen size it is running on.

Of course, there are more in-depth ways of handling different screen sizes

and you will explore them in the coming chapters.

While you have much more content to add to this XAML file, you are going

to do so in the context of the following topics. Your next step is to add multiple

child views. For this, you are going to need to choose a suitable Layout.

�Layouts
.NET MAUI provides you with a set of prebuilt layout classes that allow you

to group and arrange views in your application. The aim of this section is to

explore each layout control and how it might be used for your application.

I strongly recommend playing around with each of the layouts to see what

will fit best for each individual use case and always remember to keep the

visual tree as simple as possible.

�AbsoluteLayout
As the name suggests, the AbsoluteLayout allows the positioning of its

children with absolute values. The x, y, width, and height of a child are

controlled through the LayoutBounds attached property. This means you

use as follows

Chapter 5 User Interface Essentials

119

<AbsoluteLayout>
 <Label
 AbsoluteLayout.LayoutBounds="0,0,600,200"/>
</AbsoluteLayout>

Figure 5-3 shows how a control is positioned inside an AbsoluteLayout.

Figure 5-3.  AbsoluteLayout overview

There is also the option to define layout bounds that are

proportional to the AbsoluteLayout itself. You can control this with the

AbsoluteLayout.LayoutFlags attached property.

<AbsoluteLayout>
 <Label
 AbsoluteLayout.LayoutBounds="0,0,0.5,0.2"
 AbsoluteLayout.LayoutFlags="All"/>
</AbsoluteLayout>

This will result in the Label being positioned at 0,0, but the width will

be 50% of the AbsoluteLayout and the height will be 20%. This provides

a lot of power when defining a user interface that can grow as the size of a

device also increases.

Chapter 5 User Interface Essentials

120

The LayoutFlags option provides you with a lot of power. You can

choose which part of the LayoutBounds is applied absolutely and which is

applied proportionally. Here are the possible values for LayoutFlags and

what they impact:

Value Description

None All values are absolute.

XProportional The X property is proportional to the

AbsoluteLayout dimensions.

YProportional The Y property is proportional to the

AbsoluteLayout dimensions.

WidthProportional The Width property is proportional to the

AbsoluteLayout dimensions.

HeightProportional The Height property is proportional to the

AbsoluteLayout dimensions.

PositionProportional The X and Y properties are proportional to the

AbsoluteLayout dimensions.

SizeProportional The Width and Height properties are proportional

to the AbsoluteLayout dimensions.

All All properties are proportional to the

AbsoluteLayout dimensions.

The AbsoluteLayout can be an incredibly powerful layout when used

in the right scenario. For your scenario, it offers more complexities than I

really think you need to handle.

Chapter 5 User Interface Essentials

121

�FlexLayout
The FlexLayout comes with a large number of properties to configure

how its children are positioned. If you want your controls to wrap, this is

the control for you! A good example for using the FlexLayout is a media

gallery.

Figure 5-4 shows how controls can be positioned inside a FlexLayout.

Figure 5-4.  FlexLayout overview

The above layout can be achieved with the following code example:

<FlexLayout
 AlignItems="Start"
 Wrap="Wrap"
 Margin="30"
 JustifyContent="SpaceEvenly">
 <Border
 BackgroundColor="LightGray"
 WidthRequest="100"
 HeightRequest="100" />
 <Border
 BackgroundColor="LightGray"

Chapter 5 User Interface Essentials

122

 WidthRequest="100"
 HeightRequest="100" />
 <Border
 BackgroundColor="LightGray"
 WidthRequest="100"
 HeightRequest="100" />
 <Border
 BackgroundColor="LightGray"
 WidthRequest="100"
 HeightRequest="100" />
</FlexLayout>

Each of the properties you are using allows you to customize where

each item is positioned during the rendering process and how it will

move around in the application if it is resized. For further information

on the possible ways of configuring the FlexLayout, read the Microsoft

documentation at https://learn.microsoft.com/dotnet/maui/user-
interface/layouts/flexlayout.

Your BoardDetailsPage only needs controls positioned vertically so a

FlexLayout feels like an overly complicated layout for this purpose.

�Grid
I love Grids. They are usually my go-to layout option, mainly because

I have become used to thinking about how they lay out controls and

because they tend to allow you to keep your visual tree depth shallow.

The layout essentially works by allowing you to define a set of rows and

columns and then define which control should be displayed in which row/

column combination.

Figure 5-5 shows how controls can be positioned inside a Grid.

Chapter 5 User Interface Essentials

https://learn.microsoft.com/dotnet/maui/user-interface/layouts/flexlayout
https://learn.microsoft.com/dotnet/maui/user-interface/layouts/flexlayout

123

Figure 5-5.  Grid layout overview

Controls inside a Grid are allowed to overlay each other, which can

provide an extra tool in a developer’s toolbelt when needing to show/

hide controls. Controls in the Grid are arranged by first defining the

ColumnDefinitions and RowDefinitions. Let’s take a look at how to create

the above layout with a Grid.

<Grid
 ColumnDefinitions ="*,2*,250,Auto"
 ColumnSpacing="20"
 Margin="30"
 RowDefinitions="*,*"
 RowSpacing="20">
 <Border
 BackgroundColor="LightGray"
 Grid.Column="0"
 Grid.Row="0" />
 <Border
 BackgroundColor="LightGray"
 Grid.Column="1"

Chapter 5 User Interface Essentials

124

 Grid.Row="1" />
 <Border
 BackgroundColor="LightGray"
 Grid.Column="2"
 Grid.Row="0" />
 <Border
 BackgroundColor="LightGray"
 Grid.Column="3"
 Grid.Row="1"
 WidthRequest="30"
 HeightRequest="30" />
</Grid>

You can see that you have created columns using a variety of different

options:

•	 250: This is a fixed width of 250.

•	 Auto: This means that the column will grow in width

based on its contents. It is recommended to use this

option sparingly as it will result in the Grid control

having to measure its children and force a rerender of

itself and the other children.

•	 *: This is proportional and will result in the leftover

space being allocated out. In this example, two

columns use the * notation. This results in those two

columns being allocated one-third and two-thirds of

the remaining width, respectively. This is because * is

actually considered 1*.

In your scenario, you are going to need multiple groups of controls.

For this reason, I believe Grids will just make it slightly more complicated

for you.

Chapter 5 User Interface Essentials

125

�HorizontalStackLayout
The name really gives this away. It positions its children horizontally.

The HorizontalStackLayout is not responsible for providing sizing

information to its children, so the children are responsible for calculating

their own size.

Figure 5-6 shows how controls can be positioned inside a

HorizontalStackLayout.

Figure 5-6.  HorizontalStackLayout overview

The above layout can be achieved with the following code example:

<HorizontalStackLayout
 Spacing="20"
 Margin="30">
 <Border
 BackgroundColor="LightGray"
 WidthRequest="100" />
 <Border
 BackgroundColor="LightGray"
 WidthRequest="100" />
 <Border

Chapter 5 User Interface Essentials

126

 BackgroundColor="LightGray"
 WidthRequest="100" />
</HorizontalStackLayout>

You wish to layout your controls vertically so you can guess where this

is going, although you will actually use one to group some of your inner

controls.

�VerticalStackLayout
The name really gives this away. It positions its children vertically.

The VerticalStackLayout follows the same sizing rules as the

HorizontalStackLayout, so the children are responsible for calculating

their own size.

And there you have it: something that arranges its children vertically,

which is exactly what you need!

Figure 5-7 shows how controls can be positioned inside a

VerticalStackLayout.

Figure 5-7.  VerticalStackLayout overview

Chapter 5 User Interface Essentials

127

The above layout can be achieved with the following code example:

<VerticalStackLayout
 Spacing="20"
 Margin="30">
 <Border
 BackgroundColor="LightGray"
 HeightRequest="100" />
 <Border
 BackgroundColor="LightGray"
 HeightRequest="100" />
 <Border
 BackgroundColor="LightGray"
 HeightRequest="100" />
</VerticalStackLayout>

We mentioned that this is the layout that you will want to use in your

page; let’s go ahead and use it. Inside the Border you added earlier, add the

following to your BoardDetailsPage.xaml file.

<VerticalStackLayout>
 <VerticalStackLayout
 Padding="20">
 <Label
 Text="Name"
 FontAttributes="Bold" />
 <Entry />
 <Label
 Text="Layout"
 FontAttributes="Bold" />
 <HorizontalStackLayout>
 <RadioButton
 x:Name="FixedRadioButton"

Chapter 5 User Interface Essentials

128

 Content="Fixed" />
 </HorizontalStackLayout>
 <VerticalStackLayout>
 <Label
 Text="Number of Columns"
 FontAttributes="Bold" />
 <Entry Keyboard="Numeric" />
 <Label
 Text="Number of Rows"
 FontAttributes="Bold" />
 <Entry Keyboard="Numeric" />
 </VerticalStackLayout>
 </VerticalStackLayout>
 <Button
 Text="Save"
 HorizontalOptions="End" />
</VerticalStackLayout>

Yes, I know! I spoke about keeping the visual tree simple and here

you are nesting quite a few layouts. I find there is typically some level of

pragmatism that needs to be applied. This page is still relatively simple in

terms of what is being rendered on screen so I will argue that it is fine. If

you were to repeat this layout multiple times, you would need to be a little

more strict and find the best way to lay it all out. Quite often you will find

that there can be a balancing act between defining something to give the

best performance and making it easier to maintain as a developer.

So you have now built your UI, but you will notice that it doesn’t do

anything other than let the user type in the entry fields. You need to bind

the view up to your view model.

Chapter 5 User Interface Essentials

129

This is not strictly part of layouts, but it is worth noting how you apply

the Keyboard property to your Entry controls. This allows you to inform

the operating system what soft keyboard to display and therefore limit

the type of data the user can enter. Note that this only applies to mobile

applications and it only really helps if a hardware keyboard is not used; if a

user does connect a hardware keyboard, they will be able to enter invalid

characters; therefore, it will still be up to us as developers to validate that

the correct data has been entered. We will cover how to validate data in a

reusable way in Chapter 9.

�Data Binding
UI-based applications, as their name suggests, involve presenting

an interface to the users. This UI is rarely ever just a static view and

therefore needs to be updated, drive updates into the application, or

both. This process is typically an event-driven one as either side of this

synchronization needs to be notified when the other side changes. .NET

MAUI wraps this process up for you through a concept called data binding.

Data binding provides the ability to link the properties from two objects so

that changes in one property are automatically updated in the second.

�Binding
The most common type of bindings that you create is between a single

value at the source and a single value at the target. The target is the owner

of the bindable property. I use the terms target and source because you

do not have to solely bind between a view and a view model. There are

scenarios where you may wish to bind one control to another.

Before you jump into creating your first binding, you need to first

create something to bind to. Open your BoardDetailsPageViewModel

class, which is the view model for your view, and add the following:

Chapter 5 User Interface Essentials

130

private string boardName = string.Empty;
public string BoardName
{
 get => boardName;
 set => SetProperty(ref boardName, value);
}

It is worth noting that a Binding must be created against a property

(e.g., the BoardName definition from the code above). Binding to a field

(e.g., boardName) will not work.

�BindingContext

And finally the crucial step is to set the BindingContext of your page to this

view model. In Chapter 4, you did this by setting it in the XAML directly,

but because you have registered your view model with the dependency

injection layer, you can make the most of that and have it create the

view model and whatever dependencies it has for you. Open your

BoardDetailsPage.xaml.cs file and change the constructor to

public BoardDetailsPage(BoardDetailsPageViewModel
boardDetailsPageViewModel)
{
 InitializeComponent();
 BindingContext = boardDetailsPageViewModel;
}

The above code allows you to rely on the constructor injection

functionality that .NET MAUI and Shell provide.

The act of setting the BindingContext property means that any

bindings created in the page/view and any child views will be by default

against this BindingContext.

Chapter 5 User Interface Essentials

131

Now if you jump into the BoardDetailsPage.xaml file, you can apply

the binding to your new BoardName property in your view model. You want

to modify the first Entry that you added to look like

<Entry Text="{Binding BoardName}" />

This is a relatively small change and will look like the bindings you

created back in Chapter 4 when exploring the MVVM pattern. There isn’t

much detail to this, but there is a fair amount of implicit behavior that I feel

I must highlight. Let’s cover what it tells you first and then what it doesn’t.

You are creating a binding between the BoardName property (which

exists on your BoardDetailsPageViewModel) and the Text property on the

Entry control.

Now on to what this code doesn’t tell you.

�Path

The binding could also be written as

Text="{Binding Path=BoardName}"

The Path element of the binding is implied if you do not explicitly

provide it but only as the first part of the binding definition. Why am

I telling you this? There are times when you will need to supply the

Path= part.

�Mode

I mentioned that bindings keep two properties in sync with each other.

When you create a binding, you can define which direction the updates

flow. In your example, you have not provided one, which then relies on

Chapter 5 User Interface Essentials

132

the default Mode for the bindable property that you are binding to. In this

case, it is the Text property of the Entry, which has a default binding

mode of TwoWay. I strongly urge you to make sure you are aware of both

these defaults and your expectation when creating a binding. Choosing

the correct Mode can also boost performance. For example, the OneTime

binding mode means that no updates need to be monitored for. In your

scenario, you don’t currently need to allow the view model to update the

Entry Text property; however, as you progress, this page will also allow

for the editing of a board so you will leave it alone. If you didn’t need

to edit, you could in theory modify your binding to be Text="{Binding
Path=BoardName, Mode=OneWay}".

There are several variations for binding modes:

•	 Default: As the name suggests, it uses the default,

which is defined in the target property.

•	 TwoWay: It allows for updates to flow both ways

between source and target. A typical example is

binding to the Text property of an Entry where you

want to both receive input from the user and update

the UI, such as your scenario that you just added with

the Entry and its Text property as Text="{Binding
Path=BoardName}".

•	 OneWay: It allows for updates to flow from the source

to the target. An example of this is your ClockWidget

where you only want updates to flow from your source

to your target.

•	 OneWayToSource: It allows for updates to flow from the

target to the source. An example of this is binding the

SelectedItem property on the ListView to a value in

your view model.

Chapter 5 User Interface Essentials

133

•	 OneTime: It only updates the target once when the

binding context changes.

�Source

As mentioned, a binding does not have to be created against something

defined in your code (e.g., a property on a view model). It can, in fact, be

created against another control. If you look back at the XAML you created

for this page, you will notice that you gave the RadioButton the name of

FixedRadioButton. This was actually setting you up for this moment: you

can now bind your innermost VerticalStackLayouts visibility to the value

of this RadioButton.

<VerticalStackLayout
 �IsVisible="{Binding IsChecked, Source={x:Reference

FixedRadioButton}}">

If you just wanted to allow the user to optionally turn a setting

on in your UI, you could use a Switch control instead. I opted for the

RadioButton as this will play very well with your extra assignment at the

end of this chapter.

Bindings can start to look complicated quickly and this is a good

example, but if you break it down, it can become much easier to follow.

You are binding the IsVisible property on your VerticalStackLayout

to the IsChecked property from the Source, which is a Reference to the

RadioButton called FixedRadioButton.

Chapter 5 User Interface Essentials

134

�Applying the Remaining Bindings
Let’s apply the remaining bindings to your page and view model so that all

fields now update your view model.

In your BoardDetailsPageViewModel class, you need to add the

backing fields and properties to bind to

private bool isFixed = true;
private int numberOfColumns = 3;
private int numberOfRows = 2;
public bool IsFixed
{
 get => isFixed;
 set => SetProperty(ref isFixed, value);
}
public int NumberOfColumns
{
 get => numberOfColumns;
 set => SetProperty(ref numberOfColumns, value);
}
public int NumberOfRows
{
 get => numberOfRows;
 set => SetProperty(ref numberOfRows, value);
}

Then in your BoardDetailsPage.xaml file, you need to bind to those

new properties with the bold sections below highlighting your additions.

Change the first RadioButton to be

<RadioButton
 Content="Fixed"

Chapter 5 User Interface Essentials

135

 x:Name="FixedRadioButton"
 IsChecked="{Binding IsFixed}" />

Then change the Entry that follows after the RadioButton to be

<Entry
 Text="{Binding NumberOfColumns}"
 Keyboard="Numeric" />
And finally change the Entry that follows that to be
<Entry
 Text="{Binding NumberOfRows}"
 Keyboard="Numeric" />

�MultiBinding
There can be occasions when you wish to bind multiple source properties

to a single target property in a view. To take a minor detour, let’s rework

your ClockWidgetViewModel to have two properties: one with the date and

one with the time. You should end up with the following code (the bold

highlights the new parts):

namespace WidgetBoard.ViewModels;
public class ClockWidgetViewModel : ViewModelBase
{
 private readonly Scheduler scheduler = new();
 private DateOnly date;
 private TimeOnly time;
 public ClockWidgetViewModel()
 {
 SetTime(DateTime.Now);
 }
 public DateOnly Date
 {

Chapter 5 User Interface Essentials

136

 get => date;
 set => SetProperty(ref date, value);
 }
 public TimeOnly Time
 {
 get => time;
 set => SetProperty(ref time, value);
 }
 private void SetTime(DateTime dateTime)
 {
 Date = DateOnly.FromDateTime(dateTime);
 Time = TimeOnly.FromDateTime(dateTime);
 scheduler.ScheduleAction(
 TimeSpan.FromSeconds(1),
 () =>
 {
 SetTime(DateTime.Now);
 });
 }
}

The change in the view model actually opens up a number of

possibilities for you. You could

•	 Add separate Labels to render the information in

different locations

•	 Make use of a MultiBinding and render both pieces of

information in a single Label

It is the latter you will be using here. Open your ClockWidgetView.
xaml file and make the changes you see in bold.

<?xml version="1.0" encoding="utf-8" ?>

Chapter 5 User Interface Essentials

137

<Label
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Views.ClockWidgetView"
 FontSize="80"
 VerticalOptions="Center"
 HorizontalOptions="Center">
 <Label.Text>
 <MultiBinding StringFormat="{}{0} {1}">
 <Binding Path="Date" />
 <Binding Path="Time" />
 </MultiBinding>
 </Label.Text>
</Label>

To list what you have done here, you have

•	 Removed the Text="{Binding Time}" line

•	 Moved the above functionality into the

MultiBinding section

You should notice a slightly different syntax to the single binding

approach. In fact, you can write a single binding in a similar way, such as

<Label.Text>
 <Binding Path="Time" />
</Label.Text>

However, I am sure you can appreciate that the original

Text="{Binding Time}" is a lot more concise and easier to read. Each of

the properties that you covered under the “Binding” section applies to

each of the Binding elements under MultiBinding.

Chapter 5 User Interface Essentials

138

You must supply either a StringFormat or a Converter in a

MultiBinding or an exception will be thrown. The reason for this is to

allow for the multiple values to be mapped down to the single value on

the target.

�Command
Very often you will need your applications to respond to user interaction.

This can be by tapping or clicking on a button or selecting something

in a list. This interaction is recorded in your view, but you usually

require that the logic to handle this interaction be performed in the view

model. This comes in the form of a Command and an optional associated

CommandParameter set of properties. A command works in a similar way to

an event; you can provide a method that will be executed when an event

happens; commands are suited to the MVVM architecture because it

enables you to bind the command to an instance in the view model, which

is where you want your business logic to reside. The Command property

itself can be bound from the view to the view model and allows the view

model to not only handle the interaction but also to determine whether

the interaction can be performed in the first place. You already added a

Button to your BoardDetailsPage.xaml file but you didn’t hook it, so let’s

do exactly that!

You just need to modify your button to be (changes in bold)

<Button
 Text="Save"
 HorizontalOptions="End"
 Command="{Binding SaveCommand}" />

Based on the binding content that you have explored, you can say that

this Buttons Command property is now bound to a property on your view

model called SaveCommand. You haven’t actually created this property

yet. If you are thinking it would be great if the tooling could know this

Chapter 5 User Interface Essentials

139

and report it to me, then the next section has got you covered. “Compiled

Bindings” will show you how to inform the tooling of how to report it to

you. First, though, open your BoardDetailsPageViewModel.cs file and add

your command implementation.

Your implementation comes in multiple parts.

	 1.	 You define the property itself:

public Command SaveCommand { get; }

You typically define a command as a read-only

property as you rarely want it to change. You will likely

come across commands being defined with the use of

the ICommand interface rather than the Command class.

The reason you are using the latter is so that you can

make use of a specific method (see number 3 in this

list) to update some of your views.

	 2.	 You define what action will be performed when the

command is executed (basically when the Button is

tapped/clicked in this scenario).

public BoardDetailsPageViewModel()
{
 SaveCommand = new Command(
 () => Save(),
 () => !string.IsNullOrWhiteSpace(BoardName));
}
private void Save()
{
 var board = new Board
 {

Chapter 5 User Interface Essentials

140

 Name = BoardName,
 NumberOfColumns = NumberOfColumns,
 NumberOfRows = NumberOfRows
 };
}

The Command class takes two parameters. The first

is the action to perform when the command is

executed, and the second, which is optional, is

a way of defining whether the command can be

executed. A good use case for this is if you wish to

make sure that the user has entered all the required

information. In your scenario, you will make sure

that the user has entered a name for the board.

	 3.	 You notify the view when the status of whether the

command can be executed changes. To be clear, you

don’t have to know that the status has changed; you

can simply inform the view that it should re-query

the status. This is where the Command class and

its ChangeCanExecute method come in. For this,

you need to tweak your BoardName property to the

following:

public string BoardName
{
 get => boardName;
 set
 {
 SetProperty(ref boardName, value);
 SaveCommand.ChangeCanExecute();
 }
}

Chapter 5 User Interface Essentials

141

This change means that every time the BoardName property changes

(and this will be done via the binding from the view), the Button that is

bound to the SaveCommand will re-query to check whether the command

can be executed. If it can, the Button will be enabled and the user can

interact with it; if not, it will be disabled.

�Compiled Bindings
Compiled bindings are a great feature that you should in almost all cases

turn on! They help to speed up your applications because they help the

compiler know what the bindings will be set to and reduce the amount of

reflection that is required. Reflection is notoriously bad for performance

so wherever possible it is highly recommended to avoid using it. Bindings

by default do use an amount of reflection in order to handle the value

changes between source and target. Compiled bindings, as just discussed,

help to reduce this, so let’s learn how to turn them on.

Compiled bindings also provide design-time validation. If you set a

binding to a property on your view model that doesn’t exist (imagine you

made a typo, which I do a lot!), without compiled bindings, the application

would still build but your binding won’t do anything. With a compiled

binding, the application will fail to build and the tooling will report that the

property you mistyped doesn’t exist.

<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Pages.BoardDetailsPage"
 x:DataType="viewModels:BoardDetailsPageViewModel">

Now that you have set up your BoardDetailsPage to allow user entry

and even perform an action when the Save button is interacted with, you

need to structure your application so that you can see this happen.

Chapter 5 User Interface Essentials

142

Note that since .NET 9.0, you will see warnings reported if you do not

use compiled bindings; this was implemented by the team at Microsoft in

an effort to make sure developers are making the most of the performance

and compile time safety that they offer.

�Make Use of the BoardDetailsPage
In order to see the BoardDetailsPage in action, we will first need to modify

the contents of the AppShell.xaml file to point to the new page. Note that

we will only be tweaking this file in order to see the result of the changes

we have introduced in this chapter. The next chapter will delve into much

further detail on Shell.

Proceed by opening the AppShell.xaml file and modify the contents to

match the following (note that the actual changes from the original content

are shown in bold):

<?xml version="1.0" encoding="UTF-8" ?>
<Shell
 x:Class="WidgetBoard.AppShell"
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:pages="clr-namespace:WidgetBoard.Pages"
 Shell.FlyoutBehavior="Disabled"
 Title="WidgetBoard">

 <ShellContent
 Title="Home"
 �ContentTemplate="{DataTemplate

pages:BoardDetailsPage}" />

</Shell>

Chapter 5 User Interface Essentials

143

This will result in the new BoardDetailsPage being shown when we

open the application.

�Taking Your Application for a Spin
If you run the application, you will see that you are first presented with the

screen to create a new board. You can enter the details and press Save.

Figure 5-8 shows how your application looks when it is first loaded.

Figure 5-8.  The application home page

It is worth noting that the Save button will not do anything just yet.

Adding the handling of this button will be the topic of the next chapter

when we dig deep into Shell and how to allow users to navigate around our

applications.

Chapter 5 User Interface Essentials

144

�Summary
In this chapter, you have

•	 Created and applied an icon for your application

•	 Added some placeholder pages and view models

•	 Filled your first page with some UI and setup bindings

to the view model

•	 Covered data binding and its many uses

•	 Gained an understanding of XAML

•	 Learned about the possible layouts you can use to

group other controls

In the next chapter, you will

•	 Gain an understanding of Shell and apply this to

building your application’s structure

•	 Apply the Shell navigation to allow you to navigate to

your next page and the next chapter

•	 Make use of Shell tabs and search functionality

•	 Build your flyout menu using all the learnings in

this chapter

•	 Add tabs into the application

•	 Add the ability to search for tabs

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch05.

Chapter 5 User Interface Essentials

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch05
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch05

145© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_6

CHAPTER 6

Shell

�Abstract
In this chapter, you are going to learn how to define the visual hierarchy of

your .NET MAUI application and handle common concepts like navigation

and search functionality – all through a concept called Shell.

�Prerequisites
You need to do some setup before you can jump into using Shell. If Shell

is still feeling like an unknown concept, fear not; we will be covering it in

depth within this chapter.

Let’s go ahead and add the following folders to your project.

�Pages
Let’s go ahead and create the following files under the Pages folder. The

following steps show how to add the new pages:

•	 Right-click the Pages folder.

•	 Select Add ➤ New Item.

https://doi.org/10.1007/979-8-8688-1189-0_6#DOI

146

•	 Select the .NET MAUI tab.

•	 Select .NET MAUI ContentPage (XAML).

•	 Click Add.

�BoardListPage

This is the page that will render a list of boards that users will create within

your application. For now, you will not touch the contents of this file. Note

that you should see BoardListPage.xaml and BoardListPage.xaml.cs

files created.

You will also need to jump over to the MauiProgram.cs file and register

this page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<BoardListPage>();

�FixedBoardPage

This is the page that will render the boards you create in the page created

in the previous chapter. For now, you will not touch the contents of this

file. Note that you should see FixedBoardPage.xaml and FixedBoardPage.
xaml.cs files created.

You will also need to jump over to the MauiProgram.cs file and register

this page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<FixedBoardPage>();

�SettingsPage

This is the page that will render any settings that the user can modify,

for example, how frequently to refresh the widgets. For now, you will not

touch the contents of this file. Note that you should see SettingsPage.
xaml and SettingsPage.xaml.cs files created.

Chapter 6 Shell

147

You will also need to jump over to the MauiProgram.cs file and register

this page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<SettingsPage>();

�ViewModels
This houses your ViewModels that are the backing for both your Pages and

Views. You created this folder in the previous chapter, but you need to add

a number of classes. The following steps show how to add the new pages:

•	 Right-click the ViewModels folder.

•	 Select Add ➤ New Class.

•	 Click Add.

�AppShellViewModel

This serves as the view model for the AppShell file that is created for you

by the tooling.

namespace WidgetBoard.ViewModels;

public class AppShellViewModel : BaseViewModel
{
}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<AppShellViewModel>();

Chapter 6 Shell

148

�BoardListPageViewModel

This serves as the view model for the BoardListPage file that will be

responsible for displaying all available boards within the application to

the user.

namespace WidgetBoard.ViewModels;

public class BoardListPageViewModel : BaseViewModel
{
}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<BoardListPageViewModel>();

�FixedBoardPageViewModel

This serves as the view model for the FixedBoardPage file you created.

namespace WidgetBoard.ViewModels;

public class FixedBoardPageViewModel : BaseViewModel
{
}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<FixedBoardPageViewModel>();

You should have noticed a common pattern with the creation of these

files and the need to add them to the MauiProgram.cs file. This is to allow

you to fully utilize the dependency injection provided by the framework,

which you learned about in Chapter 3.

Chapter 6 Shell

149

�SettingsPageViewModel

This serves as the view model for the SettingsPage file you created.

namespace WidgetBoard.ViewModels;

public class SettingsPageViewModel : BaseViewModel
{
}

You also need to jump over to the MauiProgram.cs file and register this

page with the Services inside the CreateMauiApp method.

builder.Services.AddTransient<SettingsPageViewModel>();

With that concluding the prerequisites required for this chapter, let’s

proceed onto learning all about Shell and how we can define the structure

of .NET MAUI applications.

�Shell
Shell in .NET MAUI enables you to define how your application will be

laid out, not in terms of actual visuals but by defining things like whether

you want your pages viewed in tabs or just a single page at a time. It also

enables you to define a flyout, which is a side menu in your application.

You can choose to have it always visible or toggle it to slide in/out, and this

can also vary based on the type of device you are running on. Typically

a desktop has more visual real estate, so you may wish to keep the flyout

always open then.

For your application, you are going to make use of the flyout to allow

you to define multiple boards that you can configure and load. I really

like the idea of having one board for when I work and then swapping to

something else when working on a side project or even for gaming.

Chapter 6 Shell

150

To save having to return to this area and change bits, you are going to

jump straight into the more in-depth option and feature-rich outcome.

Don’t worry, though; as you discover each new concept, you will dive into

some detail to cover what it is and why you are using it along with then

applying that concept to your application.

�ShellContent
If you take a look at your AppShell.xaml file, you should see very little

inside. Currently it has the following line:

<ShellContent
 ContentTemplate="{DataTemplate pages:BoardDetailsPage}" />

You will recall that in the previous chapter we modified the contents to

the above in order to show our progress when running the application. We

didn’t dig into the details of the change in order to keep that detail within

the Shell chapter, so let’s explore what it means.

Your application’s main content will now be an instance of your

recently created BoardDetailsPage. You don’t need the Title or Route

options anymore as you will be controlling them in different ways.

The Title property will be set based on the page that is shown, so you

will learn about this a little later on.

The Route property you will control as part of the next section,

“Navigation.”

Finally, you added xmlns:pages="clr-namespace:WidgetBoard.
Pages" to the top of the file in order to be able to refer to the

BoardDetailsPage.

Chapter 6 Shell

151

�Navigation
I am personally a fan of simplifying the code I write so long as it continues

to make it easy to read. With this in mind, I would like to suggest you

improve on the registration of your pages and their view models already.

�Registering Pages for Navigation

Therefore, I suggest that you create a new method into your MauiProgram.
cs file.

private static void AddPage<TPage, TViewModel>(
 IServiceCollection services,
 string route)
 where TPage : Page
 where TViewModel : BaseViewModel
{
 services
 .AddTransient(typeof(TPage))
 .AddTransient(typeof(TViewModel));
 Routing.RegisterRoute(route, typeof(TPage));
}

Notice the line Routing.RegisterRoute(route, typeof(TPage));.

This serves as a very important part in this topic of navigation. It means

that when you tell Shell to navigate to a specific route, it will create a new

instance of the TPage type you passed in and navigate to it. Of course,

because you have registered these types with the dependency injection

layer, it means that any dependencies that are defined as parameters to the

constructor will be created and passed in for you.

Chapter 6 Shell

152

The above then means that rather than writing

services.AddTransient<BoardDetailsPage>()
services.AddTransient<BoardDetailsPageViewModel>()
Routing.RegisterRoute(route, typeof(TPage));

you can now write

AddPage<BoardDetailsPage, BoardDetailsPageViewModel>(builder.
Services, "boarddetails");

with the added change that you now define this route. So let’s go and

delete your old registrations and replace with

AddPage<BoardDetailsPage, BoardDetailsPageViewModel>(
 builder.Services, RouteNames.BoardDetails);
 AddPage<BoardListPage, BoardListPageViewModel>(
 builder.Services, RouteNames.BoardList);
 AddPage<FixedBoardPage, FixedBoardPageViewModel>(
 builder.Services, RouteNames.FixedBoard);
 AddPage<SettingsPage, SettingsPageViewModel>(
 builder.Services, RouteNames.Settings);

I also recommend defining the routes as constant strings somewhere

in your code base to avoid typos when wanting to navigate to them –

which is why the last parameter in all of the calls you just added refers

to something called RouteNames; this class does not exist, so let’s create

this now.

Add a new class file and call it RouteNames.cs and then modify the

contents to the following:

namespace WidgetBoard;

public static class RouteNames
{
 public const string BoardDetails = "boarddetails";

Chapter 6 Shell

153

 public const string BoardList = "boards";
 public const string FixedBoard = "fixedboard";
 public const string Settings = "settings";
}

This means you can save one line of code per page and view model

pair that you had registered as well as the code to register the route for

navigation. The added benefit of introducing the RouteNames class means

that you reduce the risk of a typo being introduced because the string only

needs to be defined in a single place. In fact, this means that even if there is

a typo the code will still likely work because the typo will apply everywhere

it is used within the app.

Note that as a further enhancement, if you are making use of the
.NET MAUI Community Toolkit – which I would thoroughly recommend
you do. You can make use of the AddTransientWithShellRoute
method; this would remove the need to write your own AddPage
method that we did in this section and therefore give you less code to
maintain.

Now that you have registered your pages, let’s take a look at how you

can actually perform navigation.

�Performing Navigation

There are multiple ways to specify the route for navigation, but they all use

the Shell.Current.GoToAsync method.

So, for example, you could navigate to your FixedBoardPage with the

following:

await Shell.Current.GoToAsync(RouteNames.FixedBoard);

Chapter 6 Shell

154

This will result in a FixedBoardPage being created and pushed onto the

navigation stack. This is precisely the behavior that you need at the end of

your SaveCommand execution in your BoardDetailsPagesViewModel class.

�Navigating Backward

You can also pop pages off the navigation stack by navigating backward.

This can be achieved by the following:

await Shell.Current.GoToAsync("..");

with the .. component telling Shell that it needs to go backward. In fact,

backward and forward navigation can be performed together:

await Shell.Current.GoToAsync($"../{RouteNames.BoardList}");

�Passing Data When Navigating

One key thing that you really need to do as part of creating your board

and navigating to the page that will render the board is to pass the context

across to that page so it knows what to render. There are multiple ways to

both send the data and also to receive it.

Let’s start with sending.

•	 You can pass primitive data through the query string

itself, for example:

await Shell.Current.GoToAsync($"{RouteNames.
FixedBoard}?boardid=1234");

	 By providing the boardid, you put the responsibility on

the receiving page (or page view model) to retrieve the

right board by using the specified ID.

Chapter 6 Shell

155

•	 More complex data can be sent as an

IDictionary<string, object> parameter in the

GoToAsync method, such as

await Shell.Current.GoToAsync(
 RouteNames.FixedBoard,
 new Dictionary<string, object>
 {
 { "Board", board }
 });

You can also send a complex object like the above, which means the

originating page (or page view model) is responsible for retrieving or

constructing the board and you send the whole thing to the receiving page.

There are two main ways to handle sending complex data when

navigating with Shell. Let’s take a look at each in turn.

�IQueryAttributable

To receive data, you can implement the IQueryAttributable interface

provided with .NET MAUI. Shell will either call this on the page you are

navigating to, or if the BindingContext (your view model) implements the

interface, it will call it there. Add this to your FixedBoardPageViewModel

class because you are going to need to process the data. You will be going

with the complex object option because you have already loaded the Board

in your AppShellViewModel class.

public void ApplyQueryAttributes(IDictionary<string,
object> query)
{
 var board = query["Board"] as FixedBoard;
}

Chapter 6 Shell

156

You aren’t going to do anything with this data just yet, but it is ready

for when you start to build your board layout view in the next chapter.

For now, you will continue on with the theme of Shell and define your

flyout menu.

You will also need to make your FixedBoardPageViewModel implement

the IQueryAttributable interface. Change the class definition from

public class FixedBoardPageViewModel : BaseViewModel

to the following (changes in bold):

public class FixedBoardPageViewModel : BaseViewModel,
IQueryAttributable

Note that you will also need to add the following using statement to the

top of your FixedBoardPageViewModel.cs file:

using WidgetBoard.Models;

�QueryProperty

An alternative to using the IQueryAttributable interface is to make use

of the QueryProperty in your receiving class. Making use of the same

example from the “Passing Data When Navigating” section, we could

(but we won’t so don’t worry to apply any of these changes) change the

FixedBoardPageViewModel class to the following:

using WidgetBoard.Models;

namespace WidgetBoard.ViewModels;

[QueryProperty(nameof(CurrentBoard), "Board")]
public class FixedBoardPageViewModel : BaseViewModel
{
 public Board CurrentBoard { get; set; }
}

Chapter 6 Shell

157

You can see from the changes above in bold that we have created a

property called CurrentBoard and then added the QueryProperty attribute

to the class. This attribute instructs Shell to set the CurrentBoard property

(first parameter) when a value is received in the query string with the key

of “Board”.

The main reason why I prefer IQueryAttributable over

QueryProperty is that .NET MAUI will call the method for us during

navigation; if we wanted to handle the navigation in our view model

without this interface implementation, we would have to add additional

boilerplate code to do so.

Let’s proceed to learning about the next Shell feature in order to

connect all the dots and have a working application with navigation by the

end of this chapter.

�Flyout
A flyout is a menu for a Shell application that is accessible through an

icon or by swiping from the side of the screen. The flyout can consist of an

optional header, flyout items, optional menu items, and an optional footer.

For your application, you are going to provide a basic header, and then

the main content will be a dynamic list of all the boards your user creates.

This means that you are going to have to override the main content, but

thankfully Shell makes this an easy task.

The first thing I like to do when working on a new XAML file is to turn

on compiled bindings, which I covered earlier. If you recall, this is by

specifying the x:DataType attribute to tell the compiler the type that your

view will be binding to. Let’s do that now; first, open up the AppShell.xaml

file and make the following changes (in bold):

<?xml version="1.0" encoding="UTF-8" ?>
<Shell
 x:Class="WidgetBoard.AppShell"

Chapter 6 Shell

158

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 �x:DataType="viewmodels:AppShellViewModel"
Shell.FlyoutBehavior="Flyout">

This helps you as you build the view to see what doesn’t exist in your

view model. Of course, if you prefer to build the view model first, then this

also helps.

Finally, you need to add xmlns:viewModels="clr-
namespace:WidgetBoard.ViewModels" to the top of the file.

Now we want to proceed to defining how our Flyout menu will

be presented. This can be customized with the FlyoutHeader and

FlyoutContent, so let’s take a look at each one in turn.

�FlyoutHeader

The FlyoutHeader can be given any control or layout, and therefore, you

can build a really good-looking header option. For your application, you

are just going to add a title Label.

Below your ShellContent element, you want to add the following:

<Shell.FlyoutHeader>
 <Label
 Text="My boards"
 FontSize="20"
 HorizontalTextAlignment="Center" />
</Shell.FlyoutHeader>

Hopefully the above is self-explanatory, but to cover the parts I

haven’t already covered, you have the ability to specify different layout

information in a Label so you can make the text centered. It is usually

recommended that you use the HorizontalOptions property over the

HorizontalTextAlignment property for performance reasons; however, if

you try that here, you will see that it doesn’t center the Label.

Now let’s add in the main part of your menu.

Chapter 6 Shell

159

�FlyoutContent

First, if you want to use a static set of items in your menu, you can simply

add FlyoutItems to the content. This can work well when you have a fixed

set of pages such as Settings, Home, and so on. You will be showing the

boards that the user creates, so you will need something dynamic. For this,

you need to supply the FlyoutContent. More importantly, it’s your first

introduction to the CollectionView control.

The CollectionView allows you to define how an item will look and

then have it repeated for each item in a collection that is bound to it.

Additionally, the CollectionView provides the ability to allow the user

to select items in the collection, and you can define behavior that will

be performed when that selection happens. Let’s add the following to

your Shell:

<Shell.FlyoutContent>
 <CollectionView
 ItemsSource="{Binding Boards}"
 SelectionMode="Single"
 SelectedItem="{Binding CurrentBoard}">
 <CollectionView.ItemTemplate>
 <DataTemplate x:DataType="models:Board">
 <Label
 Text="{Binding Name}"
 FontSize="20"
 Padding="10,0,0,0" />
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
</Shell.FlyoutContent>

You also need to add xmlns:models=“clr-namespace:WidgetBoard.

Models” to the top of the file.

Chapter 6 Shell

160

If we deconstruct the XAML that was just added, we can make the

following statements. Your FlyoutContent will display a collection of

items; each item will be presented as a Label set to the Name of each item.

The items will be Board instances in the collection of Boards in your view

model. Additionally, the CurrentBoard property on your view model will

be updated when the user selects one of the Labels in this collection.

If you have added all of the parts I have discussed, you will likely

notice that the tooling is reporting that you haven’t added the Boards or

CurrentBoard properties that you are binding to over in your view model.

Let’s jump over to your AppShellViewModel.cs file and add the following.

�Collection of Boards

public ObservableCollection<Board> Boards { get; } = [];

The ObservableCollection is a special type of collection that

implements INotifyCollectionChanged. This means that anything bound

to it will monitor changes to the collection and update its contents on

screen. Note that the use of ObservableCollection above means that

the UI will only respond to changes inside the collection; if you were to

assign a new value to the Boards property, then this would not update

the UI unless you implement INotifyPropertyChanged and raise the

PropertyChanged event.

Additionally, for now, you will add a fixed entry into this Boards

collection to make it possible to interact with. Later you will be saving to

and loading from a database.

public AppShellViewModel()
{
 Boards.Add(
 new Board
 {
 Name = "My first board",

Chapter 6 Shell

161

 NumberOfColumns = 3,
 NumberOfRows = 2
 });
}

Note that you will also need to add the following using statements to

the top of your file:

using System.Collections.ObjectModel;
using WidgetBoard.Models;

�Selected Board

You bound the SelectedItem property from the CollectionView to your

CurrentBoard property. When your property changes, you can navigate to

the board that was selected.

private Board? currentBoard;
public Board? CurrentBoard
{
 get => currentBoard;
 set
 {
 if (SetProperty(ref currentBoard, value) &&
 value is not null)
 {
 BoardSelected(value);
 }
 }
}

You may recall that I discussed in Chapter 4 the potential value of

SetProperty returning a Boolean value. You have finally found a use for

it! You only want to handle a board selection change if the CurrentBoard

property really has changed.

Chapter 6 Shell

162

�Navigation to the Selected Board

Following on from the “Navigation” section earlier, you will navigate to the

route “fixedboard” which your FixedBoardPage is configured to. You will

also pass in the selected board so that it can be presented on screen.

private async void BoardSelected(Board board)
{
 await Shell.Current.GoToAsync(
 RouteNames.FixedBoard,
 new Dictionary<string, object>
 {
 { "Board", board }
 });
}

Before your bindings will work, you need to make some further

changes.

�Setting the BindingContext of Your AppShell

Let’s change the constructor of your AppShell.xaml.cs file to set the

BindingContext.

public AppShell(AppShellViewModel appShellViewModel)
{
 InitializeComponent();
 BindingContext = appShellViewModel;
}

Note that you will also need to add the following using statement to

the top of your file:

using WidgetBoard.ViewModels;

Chapter 6 Shell

163

You should recall that you added the AppShellViewModel as a transient

in the MauiProgram.cs file, meaning that you will be provided with a

new instance when your AppShell class is created for you. You will also

need to do the same for the AppShell class because we have given it a

dependency now.

�Register AppShell with the MAUI App Builder

Let’s register AppShell in your MauiProgram.cs file.

builder.Services.AddTransient<AppShell>();

�Resolve the AppShell Instead of Creating It

Change the contents of your App.xaml.cs file to be as follows (changes

in bold):

namespace WidgetBoard;

public partial class App : Application
{
 private readonly AppShell appShell;

 public App(AppShell appShell)
 {
 this.appShell = appShell;
 InitializeComponent();
 }

 �protected override Window CreateWindow(IActivationState?
activationState)

 {
 return new Window(this.appShell);
 }
}

Chapter 6 Shell

164

All of the above changes allow you to use AppShell just like any other

page and not have to create an instance manually.

�Taking Your Application for a Spin

If you run the application, you will see that you are first presented with the

screen to create a new board. You can enter the details and press Save.

Figure 6-1 shows how your application looks when it is first loaded.

Figure 6-1.  The application home page

Or you can slide out the menu from the left-hand side. Figure 6-2

shows the flyout menu in your application.

Chapter 6 Shell

165

Figure 6-2.  The application flyout menu

By either selecting the board or pressing Save, you will be navigated to

your FixedBoardPage. Figure 6-3 shows your FixedBoardPage displaying

the default content. This is because you haven’t wired up the board object

that you are receiving, but it proves that your navigation and Shell setup is

working.

Chapter 6 Shell

166

Figure 6-3.  The fixed board page after navigating

�Tabs
Shell offers many different ways to build the structure of your application;

if a Flyout menu doesn’t fit your application, then you might opt to use

tabs instead, or even in combination. We are going to do the latter to show

how you can also make use of tabs.

You will have noticed that when the application was first run, we saw

the BoardDetailsPage which lets a user create a new board. While this

might be useful on the first ever use of the application, it is not likely to

be a common place where a user will want to land in our application. For

this, we are going to make two key changes: introduce tabs and change the

landing page for our users.

Let’s first open up the AppShell.xaml file and make the

following changes

Chapter 6 Shell

167

We can replace these lines

<ShellContent
 ContentTemplate="{DataTemplate pages:BoardDetailsPage}" />

with the following:

<TabBar>
 <Tab Title="Boards">
 �<ShellContent ContentTemplate="{DataTemplate pages:

BoardListPage}" />
 </Tab>

 <Tab Title="Settings">
 �<ShellContent ContentTemplate="{DataTemplate pages:

SettingsPage}" />
 </Tab>
</TabBar>

This now means that we will see a tab bar at the bottom of the

application; the first tab is labelled Boards and will present the

BoardListPage, and the second tab will be called Settings and present the

SettingsPage. We won’t add any content to the SettingsPage yet as that

will be the subject of future chapters; we added two tabs now to highlight

that Shell will only present the tab bar if there is more than one tab within

the bar.

We will now apply the same approach that was added to displaying the

user’s boards in the flyout menu. First, let’s open up the BoardListPage.
xaml file and make the following changes.

Modify the ContentPage element to look as follows (changes in bold):

<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"

Chapter 6 Shell

168

 xmlns:models="clr-namespace:WidgetBoard.Models"
 x:Class="WidgetBoard.Pages.BoardListPage"
 x:DataType="viewModels:BoardListPageViewModel"
 Title="My boards">

Inside the ContentPage element, add

<CollectionView
ItemsSource="{Binding Boards}"
SelectionMode="Single"
SelectedItem="{Binding CurrentBoard}">
<CollectionView.ItemTemplate>
 <DataTemplate x:DataType="models:Board">
 <Label
 Text="{Binding Name}"
 FontSize="20"
 Padding="10,0,0,0" />
 </DataTemplate>
</CollectionView.ItemTemplate>
</CollectionView>

This is the same as we added to AppShell.xaml so we won’t cover what

this does again.

Now let’s open the BoardListPageViewModel.cs file and make the

following addition.

�Collection of Boards

Add a collection of boards and populate it.

public ObservableCollection<Board> Boards { get; } = [];

public BoardListPageViewModel()
{
 Boards.Add(

Chapter 6 Shell

169

 new Board
 {
 Name = "My first board",
 NumberOfColumns = 3,
 NumberOfRows = 2
 });
}

Note that you will also need to add the following using statements to

the top of your file:

using System.Collections.ObjectModel;
using WidgetBoard.Models;

�Selected Board

You bound the SelectedItem property from the CollectionView to your

CurrentBoard property. When your property changes, you can navigate to

the board that was selected.

private Board? currentBoard;
public Board? CurrentBoard
{
 get => currentBoard;
 set
 {
 if (SetProperty(ref currentBoard, value) &&
 value is not null)
 {
 BoardSelected(value);
 }
 }
}

Chapter 6 Shell

170

�Navigation to the Selected Board

Following on from the “Navigation” section earlier, you will navigate to the

route “fixedboard” which your FixedBoardPage is configured to. You will

also pass in the selected board so that it can be presented on screen.

private async void BoardSelected(Board board)
{
 await Shell.Current.GoToAsync(
 RouteNames.FixedBoard,
 new Dictionary<string, object>
 {
 { "Board", board}
 });
}

Before your bindings will work, you need to make some further

changes.

�Setting the BindingContext of Your BoardListPage

Let’s change the constructor of your BoardListPage.xaml.cs file to set the

BindingContext.

public BoardListPage(BoardListPageViewModel
boardListPageViewModel)
{
 InitializeComponent();
 BindingContext = boardListPageViewModel;
}

Note that you will also need to add the following using statement to

the top of your file:

using WidgetBoard.ViewModels;

Chapter 6 Shell

171

This concludes the changes to add a set of tabs to our application. Let’s

have a look at how it presents.

�Taking Your Application for a Spin

If you run the application, you will see that you are presented with two tabs

at the bottom of the application. The main content will present the fixed

list of “My first board”. Figure 6-4 shows the application presenting a list of

boards and the option to switch tabs at the bottom. You can click/tap on

the “My first board” item, which will navigate to the page for that board.

Figure 6-4.  The application with tabs

One final feature to cover in this chapter is the ability to provide the

user the ability to search for boards.

Chapter 6 Shell

172

�Search
Shell allows you to create your own SearchHandler, which means you can

define how the results are met with the values entered in the search box

that is automatically provided. If we imagine that the user has created a

lot of boards, they will need a quick way to find the board that they wish to

display.

Let’s give the users the ability to search for their boards in the

application. First, we need to create our SearchHandler implementation.

Let’s do this by adding a new class to the root of the project.

•	 Right-click the WidgetBoard project.

•	 Select Add ➤ New Class.

•	 Enter the name BoardSearchHandler.

•	 Click Add.

Now let’s incrementally add our changes to this file.

�Add Our Data

Again we are faking the data until we reach a later chapter, but let’s add the

following into the class:

private readonly IList<Board> boards =
[
 new Board
 {
 Name = "My first board"
 },
 new Board
 {
 Name = "My second board"
 },

Chapter 6 Shell

173

 new Board
 {
 Name = "My third board",
 }
];

This gives us a list of three boards that we will be able to search against.

�Inherit from SearchHandler

The next step is to make our BoardSearchHandler class inherit from

SearchHandler. Let’s make the following bold change:

public class BoardSearchHandler : SearchHandler

�Handling the OnQueryChanged Method

The OnQueryChanged allows us to provide the search results back to Shell

so that it can present them to the user. To do this, we override the method

as follows:

protected override void OnQueryChanged(string oldValue, string
newValue)
{
 base.OnQueryChanged(oldValue, newValue);

 if (string.IsNullOrWhiteSpace(newValue))
 {
 ItemsSource = null;
 }
 else
 {
 ItemsSource = boards

Chapter 6 Shell

174

 �.Where(board => board.Name.Contains(newValue,
StringComparison.CurrentCultureIgnoreCase))

 .ToList<Board>();
 }
}

The method accepts an oldValue and a newValue parameter; for

our scenario, we only care about the newValue parameter. We will

check whether the user has entered anything; if they haven’t, we set the

ItemsSource to null, meaning that Shell will hide any results. If the user

has entered a value, then we check our boards field and whether any of

the names contains the entered text; we then assign the results to the

ItemsSource property so that Shell can present them.

�Handling the OnItemSelected Method

The final change in this class is to override the OnItemSelected method to

handle when the user selects a result.

protected override async void OnItemSelected(object item)
{
 base.OnItemSelected(item);

 // Let the animation complete
 await Task.Delay(1000);

 await Shell.Current.GoToAsync(
 RouteNames.FixedBoard,
 new Dictionary<string, object>
 {
 { "Board", (Board)item}
 });
}

Chapter 6 Shell

175

We will wait for one second to allow for the Shell navigation to finish

before we then navigate to the FixedBoardPage. The navigation code

should look very similar to the other navigation code that we added

throughout this chapter.

�Using the BoardSearchHandler

The final change in this section is to add the newly created

BoardSearchHandler class into the BoardListPage.xaml file in order to

instruct Shell on how to provide search functionality to the user.

Open the BoardListPage.xaml file and add the following code above

the CollectionView entry:

<Shell.SearchHandler>
 <widgetBoard:BoardSearchHandler
 Placeholder="Enter board name"
 ShowsResults="True">
 <SearchHandler.ItemTemplate>
 <DataTemplate x:DataType="models:Board">
 <Label
 Text="{Binding Name}"
 FontSize="20"
 Padding="10,0,0,0" />
 </DataTemplate>
 </SearchHandler.ItemTemplate>
 </widgetBoard:BoardSearchHandler>
</Shell.SearchHandler>

The first two properties that we are setting should be self-explanatory;

the third may not – because the BoardSearchHandler class is setting the

ItemsSource property to a list of Board instances, we need to tell Shell

which property on the Board class should be used to present text to the

user. The ItemTemplate property provides a template that will be created

and displayed for each search result returned.

Chapter 6 Shell

176

Note that you will also need to add the namespace xmlns:widget
Board="clr-namespace:WidgetBoard" into the ContentPage element.

This concludes the changes for searching and also this chapter; let’s

proceed to running the application for a final time.

�Taking Your Application for a Spin

If you run the application, you will see that there is a search box in the

title bar with the placeholder of “Enter board name”. Figure 6-5 shows the

application with the search box in the title bar.

Figure 6-5.  The application showing the search box

Chapter 6 Shell

177

The user will be presented with search results based on the text

entered within the search box. Figure 6-6 shows the application matching

the entered text of “ir” to both “My first board” and “My third board”.

Figure 6-6.  The application showing the search box with
search results

�ToolbarItems
This feature might not strictly belong to Shell, but it fits into the shell of

the application. We have already added a search bar to the title bar of

our application; we can also add buttons to that bar in order to provide

the user with quick ways of achieving tasks. We have the perfect scenario

in our application – there is currently no way to add a board, which will

become a little frustrating for users if we don’t fix that.

Chapter 6 Shell

178

The changes in this section will actually teach us three new concepts:

how to add buttons onto the title bar, how to present a page without

navigating to it, and how to show a page and wait for a result to be

returned. Let’s proceed to doing this.

�Add a ToolbarItem to a ContentPage’s
ToolbarItems
The ContentPage class provides us with the ToolbarItems property; this

makes it possible for all pages in an application to define buttons on the

title bar and assign specific actions that can be performed based on when

they are interacted with.

In order to introduce an add button, you need to open the

BoardListPage.xaml file and add the following code above the <Shell.
SearchHandler> element:

<ContentPage.ToolbarItems>
 �<ToolbarItem Text="Add" Command="{Binding AddBoardCommand}" />
</ContentPage.ToolbarItems>

You can see that we have added a single ToolbarItem into the

ToolbarItems collection. Our item has the Text of Add; you could also add

an image icon if you wanted to. Finally, we set the Command property by

binding it to a property called AddBoardCommand on the view model behind

this page. Based on that last part, we now need to add that property to the

view model; let’s do that now.

Open up the BoardListPageViewModel.cs file and make the following

changes.

�Introduce the AddBoardCommand property.

public ICommand AddBoardCommand { get; }

Chapter 6 Shell

179

Initialize the AddBoardCommand property; inside the constructor, add

the following line:

AddBoardCommand = new Command(OnAddBoard);

This means that the OnAddBoard method will be executed when the

button is interacted with.

Add the method that will be executed when the AddBoardCommand is

executed.

private async void OnAddBoard()
{
 await Shell.Current.GoToAsync(RouteNames.BoardDetails);
}

This doesn’t do anything new just yet; it will navigate the user to the

BoardDetailsPage because we registered the BoardDetails route to that

page in our MauiProgram.cs file earlier on in the book. One thing I would

like to highlight is that we are awaiting the call to GoToAsync; this means

that the application will only wait for the page to be navigated to and then

continue executing. This behavior is not quite what we want – we want to

show a page and have it return the board that was created so we can add it

to the Boards property and have it presented to the user. This leads us onto

the next new concept.

�Changing the PresentationMode of a
ContentPage
By default the GoToAsync method in Shell will result in the new

ContentPage that the application goes to will be navigated to – this means

it will be added to the navigation stack and a back button added to the title

bar to allow the user to navigate back. This behavior doesn’t really fit with

Chapter 6 Shell

180

our scenario of showing a page to create something and then have it close.

Shell provides us with the PresentationMode property for just these types

of scenarios.

Let’s proceed to making use of this PresentationMode property and

customize our BoardDetailsPage.xaml file. Open the file and make the

following changes.

�Add the PresentationMode property.

Modify the ContentPage element to look as follows (changes in bold):

<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Pages.BoardDetailsPage"
 Shell.PresentationMode="ModalAnimated"
 x:DataType="viewModels:BoardDetailsPageViewModel">

The use of the ModalAnimated property means that when Shell

presents the BoardDetailsPage, it will present the page on top of the

current page outside of the navigation stack. This means the title bar will

be hidden; this means that currently the user will not have a way to leave

our page, so let’s also add in a cancel button.

�Add in a cancel button.

You will want to replace the current save button code

<Button
 Text="Save"
 HorizontalOptions="End"
 Command="{Binding SaveCommand}" />

Chapter 6 Shell

181

with a grid that contains a cancel and save button.

<Grid ColumnDefinitions="*,*,*">
 <Button
 Text="Cancel"
 Command="{Binding CancelCommand}" />

 <Button
 Text="Save"
 Grid.Column="2"
 Command="{Binding SaveCommand}" />
</Grid>

The above layout means that we will have three equal spaced columns

in our Grid with the cancel Button filling the first column and the save

Button filling the third column. We won’t add in the CancelCommand to the

view model just yet; we will save it for the next section.

�Show a page and wait for a result.

This can be a common scenario in applications with multiple screens,

and in our application, it is perfect! We want to show a page to allow a user

to create a new board and then return to the screen that shows the list

of boards.

The previous sections all led up to this point! We have two final

changes to make in order to complete the ability to add a new board into

the application.

�Wait for a result to be returned from a ContentPage.

In order to do this, you need to open the BoardListPageViewModel.

cs file that you modified earlier and update the OnAddBoard method to the

following (with changes in bold):

Chapter 6 Shell

182

private async void OnAddBoard()
{
 TaskCompletionSource<Board?> boardCreated = new();
 await Shell.Current.GoToAsync(
 RouteNames.BoardDetails,
 new Dictionary
 {
 { "Created", boardCreated }
 });

 var newBoard = await boardCreated.Task;

 if (newBoard is not null)
 {
 Boards.Add(newBoard);
 }
 await Shell.Current.GoToAsync(RouteNames.BoardDetails);
}

This is our first use of the TaskCompletionSource class; if it is your

first introduction to it, let me provide some context. This class allows

a developer to perform an asynchronous operation and when it has

completed return a result back to the part of the application which was

waiting for it. So to explain our scenario:

	 1.	 We declare a TaskCompletionSource<Board?>,

meaning that we expect to receive a return result of

type Board and the ? means that it could be null.

	 2.	 We pass the boardCreated variable as a parameter

when requesting that Shell goes to the RouteNames.
BoardDetails section of the application.

	 3.	 We await the result of boardCreated and act on the

result if it is not null.

Chapter 6 Shell

183

This concludes the first change; now let’s proceed to providing a result

back from the BoardDetailsPage.

�Returning a Result from a ContentPage

The final change that we need to make is inside the

BoardDetailsPageViewModel.cs file, so let’s open it and make the following

changes.

Add the following properties:

public ICommand CancelCommand { get; }
public TaskCompletionSource<Board?>?
BoardCreatedCompletionSource { get; set; }

Add a QueryProperty attribute to the class to point Shell to the

property to set during navigation. Changes are in bold:

[QueryProperty(nameof(BoardCreatedCompletionSource), "Created")]
public class BoardDetailsPageViewModel : BaseViewModel

The above means that when a parameter named Created is

provided during a Shell.Current.GoToAsync call, the property named

BoardCreatedCompletionSource will be populated with the value.

Next you need to assign the CancelCommand property in the

constructor as follows (changes in bold):

public BoardDetailsPageViewModel()
{
 CancelCommand = new Command(
 async () =>
 {
 await Shell.Current.GoToAsync("..");

 BoardCreatedCompletionSource?.SetResult(null);
 });

Chapter 6 Shell

184

 SaveCommand = new Command(
 () => Save(),
 () => !string.IsNullOrWhiteSpace(BoardName));
}

The standout change here is the line

BoardCreatedCompletionSource?.SetResult(null); this means that

when the cancel button is actioned, the OnAddBoard method will be

returned a null result to indicate that no boards was created.

The final change in this section and in fact this chapter is to set the

result in the Save method (changes in bold):

private void Save()
{
 var board = new Board
 {
 Name = BoardName,
 NumberOfColumns = NumberOfColumns,
 NumberOfRows = NumberOfRows
 };

 Shell.Current.GoToAsync("..");

 BoardCreatedCompletionSource?.SetResult(board);
}

The first new line means that the current page will be hidden, and the

second line means that the newly created board will be returned to the

OnAddBoard method.

�Taking Your Application for a Spin

This now concludes how to show a ContentPage in a .NET MAUI

application and wait for it to return a result. Let’s take the application for a

final spin and observe the functionality that was just introduced. Figure 6-7

shows the application with the Add button in the title bar.

Chapter 6 Shell

185

Figure 6-7.  The application showing the add button

When you click the Add button, the application will present the

BoardDetailsPage. Figure 6-8 shows the application presenting the ability

to create a board by supplying a name, number of columns, and number

of rows.

Chapter 6 Shell

186

Figure 6-8.  The application showing the create a board page

Finally, when the Save button is pressed, the user is then returned to

the list of boards with the new board added to the list. Figure 6-9 shows

the application presenting a list of boards including the new board named

“Result”.

Chapter 6 Shell

187

Figure 6-9.  The application showing the list of boards

This concludes our chapter on Shell. I really hope each of the carefully

crafted examples shows how you can achieve a variety of different

scenarios.

�Summary
It is worth stating that anything you do with Shell is built out of

components in the .NET MAUI box. Shell puts them together in an

opinionated way, but you can use all of those things separately, outside of

Shell as well if that’s what you want.

Chapter 6 Shell

188

In this chapter, you have

•	 Added some placeholder pages and view models

•	 Gained an understanding of Shell and applied this to

building your application’s structure

•	 Applied the Shell navigation to allow you to navigate to

your next page and the next chapter

•	 Built your flyout menu using all the learnings in

this chapter

•	 Added tabs into the application

•	 Added the ability to search for boards

•	 Introduced the ability to add a new board by showing a

page and waiting for a result

In the next chapter, you will

•	 Create your own layout

•	 Make use of a variety of options when adding bindable

properties

•	 Provide command support from your layout

•	 Use your layout in your application

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch06.

Chapter 6 Shell

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06

189

�Extra Assignment
This extra assignment is a culmination of the last two chapters combined. I

would like you to consider how you might add a second layout type (e.g., a

board where widgets could be placed anywhere) given that you

•	 Have a single layout type on your BoardDetailsPage

•	 Have options displayed when this type is selected

•	 Pass a FixedLayout instance over as data to your

FixedBoardPage

I would love to see what concepts you come up with.

�Source Code
I would love for you to have an attempt at this extra assignment, but I have

also provided the source code. The source code for this extra assignment

can be found on the GitHub repository at https://github.com/Apress/
Introducing-.NET-MAUI-2nd-ed/tree/main/ch06-extra.

Chapter 6 Shell

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch06-extra

191© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_7

CHAPTER 7

Creating Our Own
Layout

�Abstract
In Chapter 5, you learned a lot of the fundamentals of building and binding

your user interfaces. In this chapter, you will create your own layout, make

use of a variety of options when adding bindable properties, provide

command support from your layout, and make use of your layout in your

application. This will serve as the basis for adding much more functionality

as we cover a variety of different topics in future chapters.

Let’s recap what you achieved in the last chapter: you provided the

ability for a user to create a board and supply a number of columns and

rows. You now need to lay out your board with the number of columns

and rows the user has configured and populate widgets onto the board.

Figure 7-1 is a mock-up of what you will achieve by the end of this chapter.

https://doi.org/10.1007/979-8-8688-1189-0_7#DOI

192

Figure 7-1.  Mockup of a board

At the end of the last chapter, I discussed the idea of having a second

type of layout in the “Extra Assignment” section. To continue with this

theme, I have structured the architecture of the layout to aid in this journey.

I am a fan of taking an approach like this because it allows you to potentially

replace one part of the implementation without impacting the others.

BoardLayout will be responsible for displaying the widgets. It will be

assigned an ILayoutManager implementation, which will decide where

to place the widgets. You will be adding a FixedLayoutManager to decide

this part.

�Placeholder
The first item that you need to create is the placeholder to show where a

widget will be placed. There isn’t too much to this control, but creating it

allows you to group all of the related bits and pieces together. Figure 7-2

shows what your Placeholder control will look like when rendered inside

the application.

Chapter 7 Creating Our Own Layout

193

Figure 7-2.  Mock-up of the Placeholder control

In order to achieve the above look, you are going to make use of the

Border control. This is a really useful control. It allows you to provide

borders, custom corner radius, shadows, and other styling options. It also

behaves much like the ContentView in that it can contain a single child

control.

Create a folder called Controls in your main project. It will house the

Placeholder control and potentially more as you build your application.

Next, add a new class to the folder and call it Placeholder. Note that

you are opting to create the control purely in C# without XAML; the main

reason is that it results in less code. I always find there is never a single

way to build things, and even if you like XAML, at times it doesn’t add any

value, just like in this scenario. Of course, if you prefer to build your UI with

XAML, you can do so.

namespace WidgetBoard.Controls;

public class Placeholder : Border
{
 public Placeholder()
 {
 Content = new Label

Chapter 7 Creating Our Own Layout

194

 {
 Text = "Tap to add widget",
 FontAttributes = FontAttributes.Italic,
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 };
 }

 public int Position { get; set; }
}

As discussed, there isn’t too much to this implementation, but let’s still

break it down. Here you have

•	 Created a control that inherits from Border

•	 Set the content of your control to be a Label showing

fixed text in an italic font and the text is centered both

horizontally and vertically

•	 Added a Position property to know where in the layout

it will be positioned

Now you can start building the layout that will display the placeholders

and ultimately your widgets.

�ILayoutManager
You have a slight chicken-and-egg scenario here. You need to create a

board and a layout manager, both of which need to know about the other;

therefore, let’s add in the LayoutManager parts first.

The purpose of the ILayoutManager interface is to define how the

BoardLayout will interact with a layout manager implementation.

Create a folder called Layouts in your main project. It will house the

ILayoutManager interface and more as you build your application.

Chapter 7 Creating Our Own Layout

195

Next, add a new class to the folder and call it ILayoutManager.

namespace WidgetBoard.Layouts;

public interface ILayoutManager
{
 object BindingContext { get; set; }
 BoardLayout? Board { get; set; }
 �void SetPosition(BindableObject bindableObject,

int position);
}

Let’s break it down so you have a clear definition of what you just

created:

•	 The BindingContext property allows you to pass

the context down from the BoardLayout later. This is

important for allowing bindings on the layout manager.

•	 The Board property allows the manager to interact

directly with the board it is intended to assist.

•	 The SetPosition method allows the manager to use

the position parameter and set the appropriate layout

settings on the widget/placeholder.

�BoardLayout
Your BoardLayout will be the parent of your widgets. Create the layout

inside your Layouts folder.

•	 Right-click the Layouts folder.

•	 Select Add ➤ New Item.

•	 Select the .NET MAUI tab.

Chapter 7 Creating Our Own Layout

196

•	 Select the .NET MAUI ContentView (XAML) option.

•	 Enter the name BoardLayout.

•	 Click Add.

This will give you two files. You’ll modify each one individually.

�BoardLayout.xaml
Modify the existing contents to the following:

<?xml version="1.0" encoding="utf-8" ?>
<Grid
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="WidgetBoard.Layouts.BoardLayout"
 x:Name="Self">

 <Grid
 x:Name="PlaceholderGrid" />

 <Grid
 x:Name="WidgetGrid"
 ChildAdded="OnWidgetsChildAdded"
 �BindableLayout.ItemsSource="{Binding ItemsSource,

Source={x:Reference Self}}"
 �BindableLayout.ItemTemplateSelector="{Binding

ItemTemplateSelector, Source={x:Reference Self}}"
 InputTransparent="True"
 CascadeInputTransparent="False" />
</Grid>

You have added quite a bit to this that might not feel familiar, so again

let’s break it down.

Chapter 7 Creating Our Own Layout

197

Your main layout is a Grid, and inside of it are two more Grids.

The first inner Grid (PlaceholderGrid) is where you add the

Placeholder control you created earlier in this chapter.

The second inner Grid (WidgetGrid) is where you add widgets. The

reason you have built the control this way is mainly so you can utilize a

really impressive piece of functionality that drastically reduces the amount

of code you have to write: BindableLayout.

You have not supplied a Grid.Row or Grid.Column to either of your

inner Grids. This results in both controls filling the space of the parent

Grid and the second one overlapping the first. This behavior can provide

some real power when building rather complex UIs.

�BindableLayout

BindableLayout allows you to turn a layout control into a control that

can be populated by a collection of data. BindableLayout is not a control

itself, but it provides the ability to enhance layout controls by adding an

ItemsSource property for bindings. This means that all of the layouts

you learned about in the previous chapter (e.g., Grid, AbsoluteLayout,

FlexLayout, HorizontalStackLayout, VerticalStackLayout) can be

turned into a layout that can show a specific set of controls for each item

that is provided. For this, you need to set two properties:

•	 BindableLayout.ItemsSource: This is the collection of

items that you wish to represent in the UI.

•	 BindableLayout.ItemTemplate or BindableLayout.
ItemTemplateSelector: This allows you to define

how the item will be represented. In most scenarios,

ItemTemplate is enough, but this only works when you

have one type of item to display in your collection. If

you have multiple types, each widget will be a separate

type in your application, so you need to use the

ItemTemplateSelector.

Chapter 7 Creating Our Own Layout

198

I won’t actually be providing the source for these bindings just yet; this

will be done in Chapter 8. For now, you just need to make it possible to

bind them.

�BoardLayout.xaml.cs
Now that you have created your XAML representation, you need to add in

the code-behind, which will work with it. We are going to follow a slightly

different approach for this and the next section; you have a lot of code

to add now so you will add it in stages and we will talk around what you

are adding.

The initial code should look as follows:

namespace WidgetBoard.Layouts;

public partial class BoardLayout
{
 public BoardLayout()
 {
 InitializeComponent();
 }
}

�Adding the LayoutManager Property

You want to allow the consumer of your BoardLayout control to be able to

supply a LayoutManager that will control where the widgets are placed. For

this, you need to add the following:

private ILayoutManager? layoutManager;

public ILayoutManager? LayoutManager
{
 get => layoutManager;
 set

Chapter 7 Creating Our Own Layout

199

 {
 layoutManager = value;

 if (layoutManager is not null)
 {
 layoutManager.Board = this;
 }
 }
}

The key detail of this implementation is how it assigns the Board

property on the LayoutManager to your BoardLayout control. This is to

allow the manager to interact with the layout.

One very important thing to consider is that when you create

properties that can be set in XAML, their setters can be called before your

control has its BindingContext property set. Therefore, you usually need

to handle both scenarios when relying on both pieces of functionality. To

give a concrete example of this, you have your LayoutManager property

that you have added. It will allow you to set bindings on it also, but it won’t

have a BindingContext passed down. For this, you need to override the

OnBindingContextChanged method in your BoardLayout class and assign

the value to your LayoutManager.

protected override void OnBindingContextChanged()
{
 base.OnBindingContextChanged();

 if (layoutManager is not null)
 {
 layoutManager.BindingContext = this.BindingContext;
 }
}

Chapter 7 Creating Our Own Layout

200

�Adding the ItemsSource Property

Your BoardLayout also needs to accept a collection of widgets that

will ultimately be displayed on screen. For controls that support

displaying multiple items, the common name used for such a property is

ItemsSource. So add a property with that name. You will need to add the

following to the top of the file:

using System.Collections;

This is to allow you to use the IEnumerable type.

public static readonly BindableProperty ItemsSourceProperty =
 BindableProperty.Create(
 nameof(ItemsSource),
 typeof(IEnumerable),
 typeof(BoardLayout));

public IEnumerable ItemsSource
{
 get => (IEnumerable)GetValue(ItemsSourceProperty);
 set => SetValue(ItemsSourceProperty, value);
}

In the majority of scenarios, you bind an ObservableCollection to

an ItemsSource property, which is of a different type to IEnumerable. By

choosing to use IEnumerable, it allows the consumers of your layout to

provide any type that supports holding multiple items. This means that

you can supply an ObservableCollection or you can supply a List.

�Adding the ItemTemplateSelector Property

Now that you have a collection of items to display on screen, you

need to know how to display them. It can be common to see controls

that have an ItemsSource property also have an ItemTemplate or an

Chapter 7 Creating Our Own Layout

201

ItemTemplateSelector or even both properties. An ItemTemplate allows

a developer to define how each item in the ItemsSource will be rendered

on screen. The reason you aren’t using this approach is because you can

only define one template for all items. You will be binding your widget

view models to the ItemsSource property, which means you will have

several different views that you will want to display. This is where the

ItemTemplateSelector property comes in.

public static readonly BindableProperty
ItemTemplateSelectorProperty =
 BindableProperty.Create(
 nameof(ItemTemplateSelector),
 typeof(DataTemplateSelector),
 typeof(BoardLayout));

public DataTemplateSelector ItemTemplateSelector
{
 �get => (DataTemplateSelector)GetValue(ItemTemplateSelector

Property);
 set => SetValue(ItemTemplateSelectorProperty, value);
}

You make use of the DataTemplateSelector type for your property

here. You will create an implementation a little later in this chapter, but for

now, it allows you to override the OnSelectTemplate method and provide

a suitable template for the item that is passed in.

�Handling the ChildAdded Event

I discussed earlier how the BindableLayout feature allows you to populate

a control with multiple views based on bindings. You need to hook into

the ChildAdded event so that your LayoutManager implementation can

determine where the new child should be positioned.

Chapter 7 Creating Our Own Layout

202

private void OnWidgetsChildAdded(object sender,
ElementEventArgs e)
{
 if (e.Element is IWidgetView widgetView)
 {
 �LayoutManager.SetPosition(e.Element, widgetView.

Position);
 }
}

This handler checks to see if the new child being added is of the

IWidgetView type, and if it is, it delegates out to the LayoutManager

implementation to set the widget’s position.

�Adding Remaining Bits

You have a few extra methods and properties to add in that will be used

by the FixedLayoutManager. Let’s add them and discuss their purpose

as you go.

Add the using statement at the top of the file:

using WidgetBoard.Controls;

Then add the first new method:

public void AddPlaceholder(Placeholder placeholder) =>
PlaceholderGrid.Children.Add(placeholder);

This method allows the caller to pass a placeholder that will be added

to PlaceholderGrid. This is useful when first loading a board or when

dealing with a widget being removed from a specific position.

public void RemovePlaceholder(Placeholder placeholder) =>
PlaceholderGrid.Children.Remove(placeholder);

Chapter 7 Creating Our Own Layout

203

This method allows the caller to pass a placeholder that will be

removed from the PlaceholderGrid. This is useful for when dealing with a

widget being added to a specific position.

public void AddColumn(ColumnDefinition columnDefinition)
{
 PlaceholderGrid.ColumnDefinitions.Add(columnDefinition);
 WidgetGrid.ColumnDefinitions.Add(columnDefinition);
}

This method allows for the board’s columns to be defined on both the

PlaceholderGrid and WidgetGrid.

public void AddRow(RowDefinition rowDefinition)
{
 PlaceholderGrid.RowDefinitions.Add(rowDefinition);
 WidgetGrid.RowDefinitions.Add(rowDefinition);
}

This method allows for the board’s rows to be defined on both the

PlaceholderGrid and WidgetGrid.

public IReadOnlyList<Placeholder> Placeholders =>
PlaceholderGrid.Children.OfType<Placeholder>().ToList();

This property provides all children from the PlaceholderGrid that are

of type Placeholder. This is to allow for determining which placeholder

needs to be removed when adding a widget.

�FixedLayoutManager
The final part for you to create is the FixedLayoutManager class. This will

provide the logic to

•	 Accept the number of rows and columns for a board

•	 Provide tap/click support through a command

Chapter 7 Creating Our Own Layout

204

•	 Build the board layout

•	 Set the correct row/column position for each widget

Create the file – add a new class to the Layouts folder and call it

FixedLayoutManager and then you can work through adding each of

the above pieces of functionality. Let’s add a new class file and call it

FixedLayoutManager.cs. Add the following content:

namespace WidgetBoard.Layouts;

public class FixedLayoutManager
{
}

To start, you are going to want to add the following using statements:

using System.Windows.Input;
using WidgetBoard.Controls;

And also make your class inherit from BindableObject and implement

your ILayoutManager interface. Your class should now look as follows:

using System.Windows.Input;
using WidgetBoard.Controls;

namespace WidgetBoard.Layouts;

public class FixedLayoutManager : BindableObject,
ILayoutManager
{
}

The reason for inheriting from BindableObject is down to the fact

that you need to add some bindable properties onto this class so that

developers using this implementation can bind values to the properties.

Chapter 7 Creating Our Own Layout

205

�Accepting the Number of Rows and Columns
for a Board
You need to add the ability to set the number of rows and columns to be

displayed in your fixed layout board. For this, you are going to add two

bindable properties to your FixedLayoutManager class.

�Adding the NumberOfColumns Property

public static readonly BindableProperty
NumberOfColumnsProperty =
 BindableProperty.Create(
 nameof(NumberOfColumns),
 typeof(int),
 typeof(FixedLayoutManager),
 defaultBindingMode: BindingMode.OneWay,
 propertyChanged: OnNumberOfColumnsChanged);

public int NumberOfColumns
{
 get => (int)GetValue(NumberOfColumnsProperty);
 set => SetValue(NumberOfColumnsProperty, value);
}

private static void OnNumberOfColumnsChanged(BindableObject
bindable, object oldValue, object newValue)
{
 var manager = (FixedLayoutManager)bindable;
 manager.InitializeGrid();
}

Chapter 7 Creating Our Own Layout

206

The key difference with this implementation over the

previous bindable properties that you created is the use of the

propertyChanged parameter. It allows you to define a method (see

OnNumberOfColumnsChanged) that will be called whenever the property

value changes.

The property changed method will only be called when the value

changes. This means that it may not be called initially if the value does

not change from the default value. You will also notice how we are casting

the bindable parameter to FixedLayoutManager; this is because we have

to declare the method as static and therefore do not have access to the

instance the BindableProperty belongs to. The owner of the property is

passed in via the bindable parameter to our method, hence the need to

make our FixedLayoutManager class inherit from BindableObject.

�Adding the NumberOfRows Property

public static readonly BindableProperty NumberOfRowsProperty =
 BindableProperty.Create(
 nameof(NumberOfRows),
 typeof(int),
 typeof(FixedLayoutManager),
 defaultBindingMode: BindingMode.OneWay,
 propertyChanged: OnNumberOfRowsChanged);

public int NumberOfRows
{
 get => (int)GetValue(NumberOfRowsProperty);
 set => SetValue(NumberOfRowsProperty, value);
}

Chapter 7 Creating Our Own Layout

207

private static void OnNumberOfRowsChanged(BindableObject
bindable, object oldValue, object newValue)
{
 var manager = (FixedLayoutManager)bindable;
 manager.InitializeGrid();
}

This is virtually identical to the NumberOfColumns property that you just

added, except for the NumberOfRows value.

�Providing Tap/Click Support Through
a Command
The next item on your list is to provide the ability to handle tap/click

support. This is your first time providing command support; you used

commands in your bindings, but that was on the source side rather than

the target side like here.

First, you need to add the bindable property, which should start to feel

rather familiar.

public static readonly BindableProperty
PlaceholderTappedCommandProperty =
 BindableProperty.Create(
 nameof(PlaceholderTappedCommand),
 typeof(ICommand),
 typeof(FixedLayoutManager));

public ICommand PlaceholderTappedCommand
{
 �get => (ICommand)GetValue(PlaceholderTappedCommand

Property);
 set => SetValue(PlaceholderTappedCommandProperty, value);
}

Chapter 7 Creating Our Own Layout

208

Next, you need to add the code that will execute the command. You

will be relying on the use of a TapGestureRecognizer by adding one to

your Placeholder control inside your InitializeGrid method that you

will be adding in the next section. For now, you can add the method that

will be used so that you can focus on how to execute the command. Let’s

add the code and then look over the details.

private void OnTapGestureRecognizerTapped(object? sender,
EventArgs e)
{
 if (sender is Placeholder placeholder)
 {
 �if (PlaceholderTappedCommand?.CanExecute(placeholder.

Position) == true)
 {
 �PlaceholderTappedCommand.Execute(placeholder.

Position);
 }
 }
}

You can see from the implementation that there are three main parts to

the command execution logic:

•	 First, you make sure that command has a value.

•	 Second, you check that you can execute the command.

If you recall back in Chapter 5, you provided a method

to prevent the command from executing if the user

hadn’t entered a BoardName.

•	 Finally, you execute the command and pass in the

command parameter. For this scenario, you will be

passing in the current position of the placeholder so when

a widget is added, it can be placed in the same position.

Chapter 7 Creating Our Own Layout

209

�Building the Board Layout
Now you can focus on laying out the underlying Grids so that they display

as per the user’s entered values for rows and columns.

First, add in a property to store the current Board because you need to

use it when building the layout. You also need to record whether you have

built the layout to prevent any unnecessary updates rebuilding the user

interface.

private BoardLayout? board;
private bool isInitialized;

public BoardLayout? Board
{
 get => board;
 set
 {
 board = value;
 InitializeGrid();
 }
}

Your method to build the grid layout has several parts, so let’s add

them as you go and discuss their value. You initially need to make sure that

you have valid values for the Board, NumberOfRows, and NumberOfColumns

properties plus you haven’t already built the UI.

private void InitializeGrid()
{
 if (Board is null ||
 NumberOfColumns == 0 ||
 NumberOfRows == 0 ||
 isInitialized == true)

Chapter 7 Creating Our Own Layout

210

 {
 return;
 }
 isInitialized = true;
}

The next step is to use the NumberOfColumns value and add it to your

Board. Let’s add this to the end of the InitializeGrid method.

for (int i = 0; i < NumberOfColumns; i++)
{
 �Board.AddColumn(new ColumnDefinition(new GridLength

(1, GridUnitType.Star)));
}

The GridUnitType.Star value means that each column will have an

even share of the width of the grid. So if the Grid is 300 pixels wide and you

have three columns, then each column has a resulting width of 100 pixels.

The next step is to use the NumberOfRows value and add it to your

Board. Let’s add this to the end of the InitializeGrid method.

for (int i = 0; i < NumberOfRows; i++)
{
 �Board.AddRow(new RowDefinition(new GridLength

(1, GridUnitType.Star)));
}

The final step in your InitializeGrid method is to populate each cell

(row and column) combination with a Placeholder control.

for (int column = 0; column < NumberOfColumns; column++)
{
 for (int row = 0; row < NumberOfRows; row++)
 {
 var placeholder = new Placeholder();

Chapter 7 Creating Our Own Layout

211

 placeholder.Position = row * NumberOfColumns + column;
 var tapGestureRecognizer = new TapGestureRecognizer();
 �tapGestureRecognizer.Tapped += OnTapGestureRecognizer

Tapped;
 �placeholder.GestureRecognizers.Add(tapGesture

Recognizer);
 Board.AddPlaceholder(placeholder);
 Grid.SetColumn(placeholder, column);
 Grid.SetRow(placeholder, row);
 }
}

In the above code, you

•	 Looped through the combinations of rows/columns

•	 Created a Placeholder control

•	 Set its position for use later

•	 Added a TapGestureRecognizer to handle user

interaction

•	 Added the Placeholder to the Board

•	 Positioned the Placeholder to the correct column and

row position

�Setting the Correct Row/Column Position
for Each Widget
The final part in building the board layout is to provide the method

required by the ILayoutManager interface that your FixedLayoutManager

is implementing. This method will

Chapter 7 Creating Our Own Layout

212

•	 Calculate the column/row value based on the position

parameter passed in

•	 Position the bindableObject parameter passed into the

calculated column and row position

•	 Remove any existing Placeholder in the position

public void SetPosition(BindableObject bindableObject, int
position)
{
 if (NumberOfColumns == 0 || Board is null)
 {
 return;
 }

 int column = position % NumberOfColumns;
 int row = position / NumberOfColumns;

 Grid.SetColumn(bindableObject, column);
 Grid.SetRow(bindableObject, row);

 �var placeholder = Board.Placeholders.FirstOrDefault
(p => p.Position == position);

 if (placeholder is not null)
 {
 Board.RemovePlaceholder(placeholder);
 }
}

Now that you have completed the work of providing a BoardLayout

and managing its layout with your FixedLayoutManager class, you should

go ahead and use it in your application.

Chapter 7 Creating Our Own Layout

213

�Using Your Layout
Before you can jump in and start using the BoardLayout you have created,

there is a little bit more work to be done. You need to

•	 Add a factory that will create instances of your widgets

•	 Add in the DataTemplateSelector that I referred to

earlier on

•	 Update your FixedBoardPageViewModel so your

bindings will work

�Adding a Factory That Will Create Instances
of Your Widgets
For this, you are going to create a new class called WidgetFactory in the

root of your project.

using WidgetBoard.ViewModels;
using WidgetBoard.Views;

namespace WidgetBoard;

public class WidgetFactory
{
}

There are three main purposes for this factory:

•	 Allows for the registration of widget views and

view models

•	 Creation of a widget view

•	 Creation of a widget view model

So let’s support these three requirements.

Chapter 7 Creating Our Own Layout

214

�Allowing for the Registration of Widget Views
and View Models

You need to add the following code:

private static IDictionary<Type, Type> widgetRegistrations =
new Dictionary<Type, Type>();

private static IDictionary<string, Type>
widgetNameRegistrations = new Dictionary<string, Type>();

public static void RegisterWidget<TWidgetView,
TWidgetViewModel>(string displayName) where TWidgetView :
IWidgetView where TWidgetViewModel : IWidgetViewModel
{
 �widgetRegistrations.Add(typeof(TWidgetViewModel),

typeof(TWidgetView));
 �widgetNameRegistrations.Add(displayName,

typeof(TWidgetViewModel));
}

public IList<string> AvailableWidgets =>
widgetNameRegistrations.Keys.ToList();

The above may look a little complicated, but if you break it down,

hopefully it should become clear. You have added two fields that will store

the type and name information needed for when you create the instances

of widgets.

The RegisterWidget method takes a display name parameter and

two types:

•	 TWidgetView: This must implement your IWidgetView

interface.

•	 TWidgetViewModel: This must implement your

IWidgetViewModel interface.

Chapter 7 Creating Our Own Layout

215

You then store a mapping between the view model type and the view

type (widgetRegistrations). This allows you to create a view when you

pass in a view model. This really helps you to keep a clean separation

between your view and view model.

You also store a mapping between the display name and the view

model type (widgetNameRegistrations). This will allow you to present an

option on screen to the user. Once they choose the name of the widget they

would like to add, the factory will create an instance of it.

�Creation of a Widget View

You first need to add a dependency to your constructor.

private readonly IServiceProvider serviceProvider;

public WidgetFactory(IServiceProvider serviceProvider)
{
 this.serviceProvider = serviceProvider;
}

The IServiceProvider will allow you to create a new instance

of your widgets and make sure that they are provided with all of

their dependencies. Don’t worry about needing to register the

IServiceProvider implementation with your MauiAppBuilder as you

have done with other dependencies that you require. This is automatically

provided by .NET MAUI.

Now let’s add the ability to create the widget view.

public IWidgetView? CreateWidget(IWidgetViewModel
widgetViewModel)
{
 �if (widgetRegistrations.TryGetValue(widgetViewModel.

GetType(), out var widgetViewType))
 {

Chapter 7 Creating Our Own Layout

216

 �var widgetView = (IWidgetView)serviceProvider.
GetRequiredService(widgetViewType);

 widgetView.WidgetViewModel = widgetViewModel;
 return widgetView;
 }
 return null;
}

Breaking this down:

•	 You check whether the supplied widgetViewModels

type has been registered with the factory.

•	 If it has, you use the IServiceProvider to get an

instance of the associated widget view.

•	 You assign the widgetViewModel parameter value to the

WidgetViewModel property on the widget view. This is

to allow for the setting of the widget’s BindingContext

property.

�Creation of a Widget View Model

You also need to provide the ability to create the widget view model

because this is required in your view model.

public IWidgetViewModel? CreateWidgetViewModel(string
displayName)
{
 �if (widgetNameRegistrations.TryGetValue(displayName, out

var widgetViewModelType))
 {
 �return (IWidgetViewModel)serviceProvider.GetRequired

Service(widgetViewModelType);

Chapter 7 Creating Our Own Layout

217

 }
 return null;
}

Breaking this down:

•	 You check whether the supplied displayName has been

registered with the factory.

•	 If it has, you use the IServiceProvider to get an

instance of the associated widget view model.

�Registering the Factory with MauiAppBuilder

Inside your MauiProgram.cs file, you need to register your WidgetFactory

with the MauiAppBuilder to make sure any dependencies can resolve it.

Open that file and add the following line into the CreateMauiApp method:

builder.Services.AddSingleton<WidgetFactory>();

�Registering Your ClockWidget with the Factory

Now that you have your WidgetFactory, you need to modify it so that the

factory can create the widget for you. This requires a number of steps, so

let’s walk through it.

First, open the ClockWidgetView.xaml.cs file and change it to the

following:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class ClockWidgetView : Label, IWidgetView
{
 �public ClockWidgetView(ClockWidgetViewModel

clockWidgetViewModel)

Chapter 7 Creating Our Own Layout

218

 {
 InitializeComponent();
 WidgetViewModel = clockWidgetViewModel;
 BindingContext = clockWidgetViewModel;
 }

 public IWidgetViewModel WidgetViewModel { get; set; }
}

This results in your ClockWidgetView taking a dependency on

ClockWidgetViewModel.

Next, you need to register your widget with the factory. Open

your MauiProgram.cs file and add the following lines to the

CreateMauiApp method:

WidgetFactory.RegisterWidget<ClockWidgetView, ClockWidgetView
Model>("Clock");
builder.Services.AddTransient<ClockWidgetView>();
builder.Services.AddTransient<ClockWidgetViewModel>();

This will enable the WidgetFactory to return the clock widget as an

option when presented in your overlay.

�WidgetTemplateSelector
The main purpose of this implementation is to provide a conversion

between the widget view models that you will be storing on your

FixedBoardPageViewModel and something that can actually be rendered

on the screen. You are going to depend on the WidgetFactory you have

just created. Create the class under the root project folder and modify its

contents to the following:

using WidgetBoard.ViewModels;

Chapter 7 Creating Our Own Layout

219

namespace WidgetBoard;

public class WidgetTemplateSelector : DataTemplateSelector
{
 private readonly WidgetFactory widgetFactory;

 public WidgetTemplateSelector(WidgetFactory widgetFactory)
 {
 this.widgetFactory = widgetFactory;
 }

 �protected override DataTemplate? OnSelectTemplate(object
item, BindableObject container)

 {
 if (item is IWidgetViewModel widgetViewModel)
 {
 �return new DataTemplate(() => widgetFactory.

CreateWidget(widgetViewModel));
 }
 return null;
 }
}

The main part you need to focus on here is the OnSelectTemplate

method. I did discuss the purpose of this method briefly earlier on; let’s

take a deeper look now. Its main purpose is to provide a DataTemplate,

which, as its name suggests, is a template for a piece of data. Using a

DataTemplate will result in something that can be rendered on screen each

time that piece of data is added. This is a great way to keep the separation

between view and view model – the view model holds the data and the

view knows about the template which represents how to display that data.

Chapter 7 Creating Our Own Layout

220

In your implementation, you can see that

•	 You check whether the item passed in implements your

IWidgetViewModel interface.

•	 If so, then you create a new DataTemplate and rely on

the WidgetFactory to return the widget view that is

mapped to the view models type.

�Registering the Template Selector
with MauiAppBuilder

Inside your MauiProgram.cs file, you need to register your

WidgetTemplateSelector with the MauiAppBuilder to make sure any

dependencies can resolve it. Open that file and add the following line into

the CreateMauiApp method:

builder.Services.AddSingleton<WidgetTemplateSelector>();

�Updating FixedBoardPageViewModel
You need to add in the properties that you can bind to in your view.

private string boardName = string.Empty;
private int numberOfColumns;
private int numberOfRows;

public string BoardName
{
 get => boardName;
 set => SetProperty(ref boardName, value);
}

Chapter 7 Creating Our Own Layout

221

public int NumberOfColumns
{
 get => numberOfColumns;
 set => SetProperty(ref numberOfColumns, value);
}

public int NumberOfRows
{
 get => numberOfRows;
 set => SetProperty(ref numberOfRows, value);
}

public ObservableCollection<IWidgetViewModel> Widgets { get; }

public WidgetTemplateSelector WidgetTemplateSelector { get; }

Notice that the Widgets and WidgetTemplateSelector properties

do not call the SetProperty method to notify the UI of changes. This

is a perfectly valid scenario. You know that the value will be set in the

constructor, and therefore, the value will be set before the binding is

applied.

You also need to add in the remaining code to your

ApplyQueryAttributes method that you added in the last chapter. It

should now look like the following:

public void ApplyQueryAttributes(IDictionary<string,
object> query)
{
 var board = (Board)query["Board"];

 BoardName = board.Name;
 NumberOfColumns = board.NumberOfColumns;
 NumberOfRows = board.NumberOfRows;
}

Chapter 7 Creating Our Own Layout

222

Finally, you need to add the WidgetTemplateSelector as a

dependency in your constructor. It should now look like the following:

public FixedBoardPageViewModel(
 WidgetTemplateSelector widgetTemplateSelector
)
{
 WidgetTemplateSelector = widgetTemplateSelector;
 Widgets = [];
}

You are now ready to add the layout to your page.

�Finally Using the Layout
Now that you have built your layout, you should go ahead and use it. You

previously added the FixedBoardPage so you can go ahead and change it

to the following:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:layouts="clr-namespace:WidgetBoard.Layouts"
 xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Pages.FixedBoardPage"
 Title="FixedBoardPage"
 x:DataType="viewModels:FixedBoardPageViewModel">
 <layouts:BoardLayout
 ItemsSource="{Binding Widgets}"
 �ItemTemplateSelector="{Binding WidgetTemplate

Selector}">
 <layouts:BoardLayout.LayoutManager>

Chapter 7 Creating Our Own Layout

223

 <layouts:FixedLayoutManager
 NumberOfColumns="{Binding NumberOfColumns}"
 NumberOfRows="{Binding NumberOfRows}" />
 </layouts:BoardLayout.LayoutManager>
 </layouts:BoardLayout>
</ContentPage>

This now includes your shiny new BoardLayout complete with all the

bindings you have created to make it functional.

One additional change you will need to make is to link the

FixedBoardPage to the FixedBoardPageViewModel; to do this, you can

open the FixedBoardPage.xaml.cs file and modify the contents to the

following; the changes are in bold:

using WidgetBoard.ViewModels;

namespace WidgetBoard.Pages;

public class FixedBoardPage : ContentPage
{
 public FixedBoardPage(FixedBoardPageViewModel viewModel)
 {
 InitializeComponent();
 BindingContext = viewModel;
 }
}

This sets us up nicely for when we start to use the page and display it in

our application.

Chapter 7 Creating Our Own Layout

224

�Summary
In this chapter, you have

•	 Created your own layout

•	 Made use of a variety of options when adding bindable

properties

•	 Provided command support from your layout

•	 Used your layout in your application

In the next chapter, you will

•	 Gain an understanding of what accessibility is

•	 Learn why it is important to build inclusive

applications

•	 Look at how you can make use of .NET MAUI

functionality

•	 Consider other scenarios and how to support them

•	 Look over some testing options to support your journey

to building accessible applications

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch07.

Chapter 7 Creating Our Own Layout

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch07
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch07

225

�Extra Assignment
You will have noticed how a lot of the naming includes the word Fixed.

Let’s continue the extra assignment from the previous chapter and build a

board that is a variation of this approach. I really like the idea of a freeform

board where the user can position their widgets wherever they like. This

is a little more involved, but if you consider how the BoardLayout can

use AbsoluteLayouts rather than Grids, then a new ILayoutManager

implementation should hopefully be where the alternative logic will need

to be applied. If you do embark on this journey, please feel free to share

your experience and findings.

�Source Code
I would love for you to have an attempt at this extra assignment, but I have

also provided the source code. The source code for this extra assignment

can be found on the GitHub repository at https://github.com/Apress/
Introducing-.NET-MAUI-2nd-ed/tree/main/ch07-extra.

Chapter 7 Creating Our Own Layout

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch07-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch07-extra

227© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_8

CHAPTER 8

Accessibility

�Abstract
In this chapter, you will be taking a break from adding new parts to the

user interface in order to gain an understanding of what accessibility is,

why you should make your applications accessible, and how .NET MAUI

makes this easier. You will also cover some testing options to support your

journey to building accessible applications.

I wanted this chapter to appear earlier on in this book. I feel it is such

an important topic and one that you really do need to consider early on

in your projects. It has come to settle nicely in the middle of the book now

because you needed some UI to apply the concepts to.

�What Is Accessibility?
The definition of accessibility according to the Cambridge Dictionary

(https://dictionary.cambridge.org/dictionary/english/
accessibility) is

“the quality of being easy to understand”

By considering the scenarios where your application might be less easy

to understand for a large percentage of the world’s population that have

some form of disability, you can learn to provide ways to break down the

complexities in understanding the content. This might be through the use

https://doi.org/10.1007/979-8-8688-1189-0_8#DOI
https://dictionary.cambridge.org/dictionary/english/accessibility
https://dictionary.cambridge.org/dictionary/english/accessibility

228

of assistive technologies such as voice-over assistants or screen readers,

or even providing the ability to increase the font size to make the content

easier to read.

All of this can help you as a developer learn how to build applications

that are much more inclusive of the entire population of the world.

�Why Make Your Applications Accessible?
I heard an excellent quote recently, and sadly I have been unable to

discover the original author of the quote, but it is “if you don’t know

whether your application is accessible, then you can safely say that it is not.”

Essentially, if you are not putting any effort into making it accessible, then

you can almost guarantee that it is not.

According to the World Health Organization, globally at least 2.2 billion

people have a near or distance vision impairment (www.who.int/news-
room/fact-sheets/detail/blindness-and-visual-impairment).

You want to build your applications and make them as successful

as possible. Imagine immediately ruling out up to 27% of your potential

market purely based on not making your application more inclusive for

that population.

�What to Consider When Making Your
Applications Accessible
There is a whole heap of things you can do in order to make your

applications more inclusive. To aid you on your journey to building

accessible applications, there is a fantastic set of guidelines known as

the Web Content Accessibility Guidelines (WCAG). There are four main

principles to consider:

Chapter 8 Accessibility

http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
http://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

229

•	 Perceivable: Making sure that you provide information

that can be perceived by the user. This can be by

providing text-based alternatives to images, suitable

contrast ratios, adaptive text sizing, and much more.

•	 Operable: Making sure that you provide the user

with the ability to use the application. This can be

by providing keyboard navigation, making sure they

have enough time to read and use the content, and

much more.

•	 Understandable: Making sure that you provide a user

interface that is understandable to the user. This can be

making sure that the content is readable, predictable

(appear and behave as expected), and helps the user

avoid making mistakes.

•	 Robust: Making sure the content is robust enough

that it can be interpreted by a wide variety of user

agents, including assistive technologies. This can be by

providing suitable support for assistive technologies.

To read more on these guidelines, I thoroughly recommend checking

out the Quick Reference Guide at www.w3.org/WAI/WCAG21/quickref/.

�How to Make Your Application Accessible
There are several things to consider when building an application that is

inclusive. This section will not provide a complete set of tools for building

applications inclusive for all. However, it will provide some insights to what

.NET MAUI offers and some other concepts to consider to set you off on a

journey of discovery to building much more accessible applications.

Chapter 8 Accessibility

http://www.w3.org/WAI/WCAG21/quickref/

230

�Screen Reader Support
.NET MAUI provides great tools to provide explicit support for the screen

readers on each of the supported platforms. I feel it is worth highlighting

that point again: .NET MAUI utilizes the screen readers on each
platform. This means that they will need to be enabled by the user for the

settings to take effect. You will dive into each concept and how it enables

you to expose information to those screen readers so you can provide a

much more informative experience for your users.

As a starting exercise, pick up your phone and turn on your screen

reader assistant.

�Enabling the Screen Reader on iOS

In order to enable the screen reader or VoiceOver feature on iOS, you can

follow these steps:

	 1.	 Navigate to the Settings app.

	 2.	 Select Accessibility.

	 3.	 Select VoiceOver.

	 4.	 Enable the switch to turn the feature on.

�Enabling the Screen Reader on Android

In order to enable the screen reader or TalkBack feature on Android, you

can follow these steps:

	 1.	 Navigate to the Settings app.

	 2.	 Select Accessibility.

	 3.	 Select Screen reader (this might appear as

TalkBack on your device).

Chapter 8 Accessibility

231

	 4.	 Enable the Voice Assistant (this might appear as

TalkBack on your device).

�Try Using the Screen Reader

Try navigating around to get an understanding of what the experience is

like and, most importantly, try an application you built. Does it provide a

good experience? I highly doubt it.

Let’s see how you can make the WidgetBoard application more

accessible with the screen readers available. Thankfully you haven’t built

too much UI already, so you are in a good position to start. I urge you to

consider applying concepts like this as early on in the development phase

as possible.

�SemanticProperties

The SemanticProperties class offers a set of attached properties that can

be applied to any visual element. .NET MAUI applies these property values

on the platform-specific APIs that provide accessibility.

Let’s look through each of the properties and apply them to your

BoardDetailsPage.

�SemanticProperties.Description

The SemanticProperties.Description property allows you to define a

short string that will be used by the screen reader to announce the element

to the user when it gains focus. This should be a name that implies the

intent of the element if the user were to interact with it.

As I type this chapter, I am testing the application. The first Entry

added on the BoardDetailsPage currently results in the macOS VoiceOver

assistant announcing “edit text, is editing, blank”.

Chapter 8 Accessibility

232

You can change the Entry to the following:

<Entry
 Text="{Binding BoardName}"
 SemanticProperties.Description="Enter the board name"/>

This now results in “Enter the board name, is editing, blank” being

announced, which is much more useful to the user.

You can take this a step further. You have a label above that just has the

Text of “Name.” If you change this to use your new descriptive text, then

you can set the SemanticProperties.Description value to its text. Let’s

do that now; the changes are highlighted in bold:

<Label
 Text="Enter the board name"
 x:Name="EnterBoardNameLabel"
 FontAttributes="Bold" />
<Entry
 Text="{Binding BoardName}"
 �SemanticProperties.Description="{Binding Text,

Source={x:Reference EnterBoardNameLabel}}" />

The resulting code may look less appealing, but it provides a number of

benefits:

•	 The text description is more informative on the Label.

•	 When you add in localization support, you will have

only one text field to update.

The macOS screen reader does provide a second announcement

following the announcement you have been improving. This follow-up is

“You are currently on a text field. To enter text in this field, type.” This isn’t

the most informative, so let’s provide a better hint to the user.

Chapter 8 Accessibility

233

The act of setting the SemanticProperties.Description property will

automatically make a visual element be announced by the screen reader.

By default, an Image control is not announced, but by setting this property,

the text will be announced when the control gains semantic focus.

�SemanticProperties.Hint

The SemanticProperties.Hint property allows you to provide a string

that the screen reader will announce to the user so that they have a better

understanding of the purpose of the control.

Let’s add a hint to Entry with the addition in bold:

<Entry
 Text="{Binding BoardName}"
 �SemanticProperties.Description="{Binding Text,

Source={x:Reference EnterBoardNameLabel}}"
 �SemanticProperties.Hint="Provides a name that will be

used to identify your widget board. This is a required
field." />

This change results in “Provides a name that will be used to identify

your widget board. This is a required field. You are currently on a text field.

To enter text in this field, type” being announced. I think you can agree that

this adds yet more context to the user and this is a good thing.

�SemanticProperties.HeadingLevel

The SemanticProperties.HeadingLevel property allows you to mark

an element as a heading to help organize the UI and make it easier for

users to navigate. Some screen readers enable users to quickly jump

between headings, thus providing a far more friendly navigation for those

users that rely on screen readers. To give some context on the need for

headings - when using VoiceOver on iOS you can swipe down or up to

navigate between headings and then left or right to navigate between

Chapter 8 Accessibility

234

the items under the heading, otherwise it could be an arduous task for

a user to navigate between all items in the UI in order to reach the item

they need. Headings have a level from 1 to 9 and are represented by the

SemanticHeadingLevel enumeration.

�Setting SemanticProperties from Code

All of our examples have set the properties inside XAML, but we can also set

them in C#; in fact, it looks rather different, so let’s see how to use them. If you

recall in Chapter 7 we introduced the Placeholder control which allows the

user to interact with it. We are using a Label which does not typically support

user interaction, and therefore, the screen reader will not inform the user that

they can interact with it. Thankfully we already know how to fix this; let’s open

up the Placeholder.cs file and make the following changes in bold:

public Placeholder()
{
 Content = new Label
 {
 Text = "Tap to add widget",
 FontAttributes = FontAttributes.Italic,
 HorizontalOptions = LayoutOptions.Center,
 VerticalOptions = LayoutOptions.Center
 };

 SemanticProperties.SetDescription(
 Content,
 "Tap to add a widget");
 SemanticProperties.SetHint(
 Content,
 �"Allows you to choose a widget that can be added to the

board at this location.");
}

Chapter 8 Accessibility

235

You will notice how this approach looks rather different to setting the

properties in XAML.

�SemanticScreenReader

So far we have added helpful property values that the screen reader will

use; this is great for on-screen control, but what if you want to provide

more context for when an action was triggered? .NET MAUI provides the

SemanticScreenReader that enables you to instruct a screen reader to

announce some text to the user. This can work especially well if you wish

to present instructions to a user or to prompt them if they have paused

their interaction.

The SemanticScreenReader provides a static Announce method

to perform the announcements; it also provides a Default instance. I

personally like to make use of the scenarios where .NET MAUI provides

you with a Current or a Default instance and register this with the app

builder to make full use of the dependency injection support. To do this,

write the following line of code in your MauiProgram.cs file:

builder.Services.AddSingleton(SemanticScreenReader.Default);

With the screen reader registered, you can announce that the new

board was created successfully once the user has tapped on the Save

button. You need to open the BoardDetailsPageViewModel.cs file and

make the following changes.

Add the read-only field.

private readonly ISemanticScreenReader semanticScreenReader;

Assign a value in your constructor, just applying the bold code to your

existing content.

Chapter 8 Accessibility

236

public BoardDetailsPageViewModel(ISemanticScreenReader
semanticScreenReader)
{
 this.semanticScreenReader = semanticScreenReader;
 SaveCommand = new Command(
 () => Save(),
 () => !string.IsNullOrWhiteSpace(BoardName));
}

Call Announce in your Save method, just applying the bold code to

your existing content.

private async void Save()
{
 var board = new FixedBoard
 {
 Name = BoardName,
 NumberOfColumns = NumberOfColumns,
 NumberOfRows = NumberOfRows
 };

 �semanticScreenReader.Announce($"A new board with the name
{BoardName} was created successfully.");

 await Shell.Current.GoToAsync(
 RouteNames.FixedBoard,
 new Dictionary<string, object>
 {
 { "Board", board }
 });
}

Chapter 8 Accessibility

237

If you run your application and save a new board called “My work

board,” you will observe that the screen reader will announce “A new

board with the name My work board was created successfully.” This gives

the user some valuable audible feedback. If you expect the save process to

take some time, you can also perform an announcement at the start of the

process to keep the user informed.

�AutomationProperties

AutomationProperties are the old Xamarin.Forms way of exposing

information to the screen readers on each platform. I won’t cover all of the

options because some have been replaced by the SemanticProperties

section that you just learned about. In fact, I would strongly recommend

that you always look at SemanticProperties before considering using the

AutomationProperties class. The following are the important ones that

provide a different set of functionality.

�AutomationProperties.ExcludedWithChildren

The AutomationProperties.ExcludeWithChildren property allows

developers to exclude the element supplied and all its children from the

accessibility tree. Setting this property to true will exclude the element and

all of its children from the accessibility tree.

�AutomationProperties.IsInAccessibleTree

The AutomationProperties.IsInAccessibleTree property allows

developers to decide whether the element is visible to screen readers.

A common scenario for this feature is to hide controls such as Label or

Image controls that serve a purely decorative purpose (e.g., a background

image). Setting this property to true will exclude the element from the

accessibility tree.

Chapter 8 Accessibility

238

�Suitable Contrast
WCAG states in guideline 1.4.3 Contrast (Minimum) – Level AA that the

visual presentation of text and images of text has a contrast ratio of at least

4.5:1, except for the following:

•	 Large Text: Large-scale text and images of large-scale

text have a contrast ratio of at least 3:1.

•	 Incidental: Text or images of text that are part of an

inactive user interface component, that are pure

decoration, that are not visible to anyone, or that are

part of a picture that contains significant other visual

content have no contrast requirement.

•	 Logotypes: Text that is part of a logo or brand name has

no contrast requirement.

This all boils down to calculating the difference between the lighter

and darker colors in your application when displaying text. If that contrast

ratio is 4.5:1 or higher, it’s suitable. Let’s look at how this is calculated:

(L1 + 0.05) / (L2 + 0.05)

where L1 is the relative luminance of the lighter color and L2 is the

relative luminance of the darker color. Relative luminance is defined as

the relative brightness of any point in a color space, normalized to 0 for

darkest black and 1 for lightest white. Relative luminance can be further

calculated as

For the sRGB colorspace, the relative luminance of a color is
defined as L = 0.2126 * R + 0.7152 * G + 0.0722 * B where R, G
and B are defined as:
if RsRGB <= 0.03928 then R = RsRGB/12.92 else R =
((RsRGB+0.055)/1.055) ^ 2.4

Chapter 8 Accessibility

239

if GsRGB <= 0.03928 then G = GsRGB/12.92 else G =
((GsRGB+0.055)/1.055) ^ 2.4
if BsRGB <= 0.03928 then B = BsRGB/12.92 else B =
((BsRGB+0.055)/1.055) ^ 2.4
and RsRGB, GsRGB, and BsRGB are defined as:
RsRGB = R8bit/255
GsRGB = G8bit/255
BsRGB = B8bit/255
The "^" character is the exponentiation operator.

These formulas are taken from www.w3.org/TR/WCAG21/#dfn-
relative-luminance. Let’s turn this into some C# to make it a little easier

to follow and something that you can use to test your color choices.

private static double GetContrastRatio(Color lighterColor,
Color darkerColor)
{
 var l1 = GetRelativeLuminance(lighterColor);
 var l2 = GetRelativeLuminance(darkerColor);
 return (l1 + 0.05) / (l2 + 0.05);
}
private static double GetRelativeLuminance(Color color)
{
 var r = GetRelativeComponent(color.Red);
 var g = GetRelativeComponent(color.Green);
 var b = GetRelativeComponent(color.Blue);
 return
 0.2126 * r +
 0.7152 * g +
 0.0722 * b;
}

Chapter 8 Accessibility

http://www.w3.org/TR/WCAG21/#dfn-relative-luminance
http://www.w3.org/TR/WCAG21/#dfn-relative-luminance

240

private static double GetRelativeComponent(float component)
{
 if (component <= 0.03928)
 {
 return component / 12.92;
 }
 return Math.Pow(((component + 0.055) / 1.055), 2.4);
}

If you take a look at the colors you are using for your text controls and

the background colors, you can work out whether you need to improve on

the contrast ratio. You can see by checking in your Styles.xaml file that

your Label control uses Gray900 for the text color. Checking in the Colors.
xaml file, you can see that this Gray900 color has a value of #212121.

Therefore, you can use your methods to calculate the contrast ratio with

GetContrastRatio(Colors.White, Color.FromArgb("#212121");

This gives you a contrast ratio of 16.10:1, which means this is providing

a very good contrast ratio. The best possible contrast is black on white,

which gives a contrast ratio of 21:1. Therefore, you do not need to make

any changes to your color scheme, which shows that .NET MAUI ships

with default color options that are suitable for building accessible

applications. In fact, I have it on good authority that the .NET MAUI

templates undergo audits to ensure that they are accessible; therefore, they

provide an excellent set of examples to follow.

�Dynamic Text Sizing
WCAG states in guideline 1.4.4 Resize text – Level AA that except for

captions and images of text, text can be resized without assistive

technology up to 200% without loss of content or functionality.

Chapter 8 Accessibility

241

This guideline mainly focuses on highlighting the fact that there is still

a large percentage of users that do not rely on accessibility features such

as screen readers or screen magnification when they could benefit from

them. The guideline further states that, as a developer, you should provide

the ability to scale the text in your application up to 200% without relying

on the operating system to perform the scaling.

In this section, I am not going to focus on adding that specific feature;

however, I will be discussing some approaches that will aid this feature as

well as using the assistive technology options.

�Avoiding Fixed Sizes

Wherever possible, you want to avoid setting the WidthRequest and

HeightRequest properties for any control that can contain text.

Imagine you set WidthRequest="200" and HeightRequest="30" on

the Label controls in your BoardDetailsPage.xaml file. What you would

initially see is that the text fits nicely using the standard font scaling

options. Figure 8-1 shows your application with fixed size controls and a

small font size.

Chapter 8 Accessibility

242

Figure 8-1.  Your application with fixed sizing and a small font size

However, if you up the scaling to 200%, you will see a rather unpleasant

screen. Figure 8-2 shows your application with fixed size controls and a

large font size, highlighting that the text becomes clipped and unreadable.

Chapter 8 Accessibility

243

Figure 8-2.  Your application with fixed sizing and a large font size

It actually appears that your initial changes without the WidthRequest

and HeightRequest values on the Label controls gives the best experience.

Figure 8-3 shows your application responding to font size changes when

control sizes are not fixed.

Chapter 8 Accessibility

244

Figure 8-3.  Your application showing responsiveness to font scaling

�Preferring Minimum Sizing

Where possible, you should use MinimumWidthRequest and

MinimumHeightRequest over WidthRequest and HeightRequest,

respectively. This allows for controls to grow. There may be scenarios

where a combination of Minimum and Maximum property values will give

a good experience when scaling is introduced.

�Font Auto Scaling

By default, all controls that render text in a .NET MAUI application have

the FontAutoScalingEnabled property set to true. This means that the

controls automatically scale their font size accordingly when the operating

system’s font scaling settings are changed.

Chapter 8 Accessibility

245

There can be scenarios when disabling this feature can provide a

more accessible experience. One example is in a wordsearch application

I built. The application made the letters appear as big as possible, so any

additional scaling by the operating system would result in parts of the text

being cut off. I advise using this option sparingly.

�Testing Your Application’s Accessibility
Each platform supported by .NET MAUI has its own set of guidelines

around testing for accessibility and even tools to aid that journey. In

this section, you are going to take a brief look at what each platform

provider offers.

�Android
Google, much like each of the other platform providers, does recommend

that you perform a manual test, such as turning on TalkBack and verifying

that the user experience is as you have designed.

Google also offers some analysis tools to detect whether any

accessibility guidelines are not being met. There is a good list provided

by Google with a breakdown of the functionality provided by each tool at

https://developer.android.com/guide/topics/ui/accessibility/
testing#analysis.

�iOS
Apple doesn’t offer as much as Google on this front. There is the

Accessibility Inspector, but it only focuses on allowing you to view

the information that the screen reader will be provided. I don’t

feel this is as good as taking a dry run through your application

Chapter 8 Accessibility

https://developer.android.com/guide/topics/ui/accessibility/testing#analysis
https://developer.android.com/guide/topics/ui/accessibility/testing#analysis

246

with the VoiceOver assistant turned on. Further information on

Apple’s offering can be found at https://developer.apple.com/
library/archive/technotes/TestingAccessibilityOfiOSApps/
TestAccessibilityiniOSSimulatorwithAccessibilityInspector/
TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html.

�macOS
Apple provides a little extra functionality when testing on macOS. It

does provide the Accessibility Inspector as per iOS and well as the

Accessibility Verifier. This tool allows you to run tests against your

application to verify items like the accessibility description have been

defined on all required elements. Further information on these features

can be found at https://developer.apple.com/library/archive/
documentation/Accessibility/Conceptual/AccessibilityMacOSX/
OSXAXTestingApps.html.

�Windows
Microsoft offers the biggest amount of options when it comes to testing the

accessibility of your applications. The Windows Software Development

Kit (SDK) provides several tools such as the ability to inspect an

application and view all related properties plus automation tests that

verify the state of accessibility. All details of the tools can be found at

https://docs.microsoft.com/windows/apps/design/accessibility/
accessibility-testing.

Chapter 8 Accessibility

https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://docs.microsoft.com/windows/apps/design/accessibility/accessibility-testing
https://docs.microsoft.com/windows/apps/design/accessibility/accessibility-testing

247

�Useful Resources
�Accessibility Checklist
The following checklist is provided by Microsoft on their documentation

site at https://docs.microsoft.com/dotnet/maui/fundamentals/
accessibility#accessibility-checklist. I haven’t added to it or

reworded because I believe it provides an excellent breakdown of the

possible ways to provide accessible support.

Follow these tips to ensure that your .NET MAUI apps are accessible to

the widest audience possible:

•	 Ensure your app is perceivable, operable,

understandable, and robust for all by following the Web

Content Accessibility Guidelines (WCAG). WCAG is

the global accessibility standard and legal benchmark

for web and mobile. For more information, see Web

Content Accessibility Guidelines (WCAG) Overview.

•	 Make sure the user interface is self-describing. Test

that all the elements of your user interface are screen

reader accessible. Add descriptive text and hints when

necessary.

•	 Ensure that images and icons have alternate text

descriptions.

•	 Support large fonts and high contrast. Avoid hard-

coding control dimensions, and instead prefer layouts

that resize to accommodate larger font sizes. Test color

schemes in high-contrast mode to ensure they are

readable.

Chapter 8 Accessibility

https://docs.microsoft.com/dotnet/maui/fundamentals/accessibility#accessibility-checklist
https://docs.microsoft.com/dotnet/maui/fundamentals/accessibility#accessibility-checklist

248

•	 Design the visual tree with navigation in mind. Use

appropriate layout controls so that navigating between

controls using alternate input methods follows the

same logical flow as using touch. In addition, exclude

unnecessary elements from screen readers (e.g.,

decorative images or labels for fields that are already

accessible).

•	 Don't rely on audio or color cues alone. Avoid

situations where the sole indication of progress,

completion, or some other state is a sound or color

change. Either design the user interface to include clear

visual cues, with sound and color for reinforcement

only, or add specific accessibility indicators. When

choosing colors, try to avoid a palette that is hard to

distinguish for users with color blindness.

•	 Provide captions for video content and a readable

script for audio content. It's also helpful to provide

controls that adjust the speed of audio or video content,

and ensure that volume and transport controls are easy

to find and use.

•	 Localize your accessibility descriptions when the app

supports multiple languages.

•	 Test the accessibility features of your app on each

platform it targets. For more information, see Testing

Your Application’s Accessibility.

�A Guide for Making Apps Accessible
Another set of great resource is the Appt website https://appt.org/en/.

To quote their website:

Chapter 8 Accessibility

https://appt.org/en/

249

“Appt.org empowers developers and organizations to build
accessible apps for everyone. On this website you will find
current statistics about the use of accessibility features on
mobile phones, code documentation for iOS, Android and
other platforms, official guidelines, in-depth articles and tips.”

They also provide a set of resources specifically for building accessible

.NET MAUI applications at https://appt.org/en/docs/net-maui/
samples.

�Summary
In this chapter, you have

•	 Gained an understanding of what accessibility is

•	 Learned why it is important to build inclusive

applications

•	 Looked at how you can make use of .NET MAUI

functionality

•	 Considered other scenarios and how to support them

•	 Looked over some testing options to support your

journey to building accessible applications

In the next chapter, you will

•	 Add a widget to a board

•	 Explore the different options available when showing

an overlay

•	 Explore how you can define styling information for

your application

•	 Learn how to handle devices running in light and

dark modes

Chapter 8 Accessibility

https://appt.org/en/docs/net-maui/samples
https://appt.org/en/docs/net-maui/samples

250

•	 Learn how to apply triggers to enhance your UI

•	 Explore how to animate parts of your application

•	 Explore what happens when you combine triggers and

animations together

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch08.

�Extra Assignment
Take one of your favorite applications that you are completely familiar with

because you know the layout and how to use it. Then proceed to

•	 Turn on the screen reading assistant on your phone.

•	 Try to navigate your way around this application.

•	 Better still, try to impact your vision with a blindfold or

remove any glasses if you use them. Try to rely entirely

on the screen reader.

•	 Perhaps try the same but modify the device font scaling

and see if the application is able to handle increases in

text size, or if it even allows this option.

The objective is to gain a sense of the experience users with limited

vision have when using the same application. Take notes on how well

applications do things and how poorly they do other things. This can be a

really great learning exercise for you all!

Chapter 8 Accessibility

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch08
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch08

251© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_9

CHAPTER 9

Advanced UI
Concepts

�Abstract
In this chapter, you will provide the user of your application with the ability

to add a widget to the boards they create through the use of an overlay. You

will further enhance this overlay by defining common styling techniques

and handling the differences between light and dark mode devices.

You will then take a journey into discovering how you can build an

application that feels natural and organic to your human user base. Finally,

you will look at how you can keep the animations driving the organic look

and feel cleanly separated from your business logic code.

As we covered in Chapter 7, there are two common approaches to

extending functionality: inheritance and composition. Chapter 7 focused

on how to utilize inheritance in how we built our BoardLayout control; this

chapter will focus on the composition approach through highlighting all

of the pieces that .NET MAUI offers to make this an easy task. The two key

offerings that we will be covering are Triggers and Behaviors – these each

have their own sections in this chapter.

https://doi.org/10.1007/979-8-8688-1189-0_9#DOI

252

�Adding the Ability to Add a Widget
to a Board
In Chapter 7, you created your own BoardLayout and the associated

FixedLayoutManager that enabled you to show a board and added in

the ability to handle interaction events by the user. In this section, you

are going to expand on that to handle the user tapping on a widget

Placeholder and letting the user choose a widget to add to the board.

�Possible Ways of Achieving Your Goal
There are several ways you can go about adding in this piece of

functionality. Some are better suited to different scenarios, and some

simply come down to a personal preference. I encourage you to

understand your goal before you embark on this journey of working out

which option will best suit your needs. If you only wish to report a message

to the user or capture a choice or even a single piece of input, then you can

utilize some underlying functionality provided by .NET MAUI. The Page

class provides the ability to do each of the three items discussed; it doesn’t

solve your needs, but it really does have value in many applications. The

Microsoft documentation provides a good set of reference examples on

how to use these options at https://learn.microsoft.com/dotnet/maui/
user-interface/pop-ups.

Let’s discuss some of the options that do solve your needs and

then make a decision on which you feel is the best candidate for your

application.

�Showing a Modal Page

So far in this book you have only considered how Shell offers the

ability to navigate between ContentPages. This is the default and most

common scenario. There can be times when you wish to show a page

Chapter 9 Advanced UI Concepts

https://learn.microsoft.com/dotnet/maui/user-interface/pop-ups
https://learn.microsoft.com/dotnet/maui/user-interface/pop-ups

253

that is blocking and will require the user to engage with it to return to the

previous page. This type of page or display is referred to as modal. The

scenario of showing something to the user and requiring them to engage

with it could be a perfect scenario.

In order to enable this functionality in .NET MAUI, you need to set the

Shell.PresentationMode property on the ContentPage that you wish to

display. For example:

<ContentPage ...
 Shell.PresentationMode="Modal">
 ...
</ContentPage>

You can then call the Shell.Current.GoToAsync method with the

routing options configured for this page and it will be presented modally

instead of being navigated to.

Pro

•	 Keeps specific code contained

Con

•	 Complicates flow of code when handling a return

result as we learned in Chapter 6 when we used a

TaskCompletionSource

�Overlaying a View

Sometimes the most straightforward way to achieve this approach is to add

another view to your page and programmatically change its visibility to

give the impression you have a modal page displaying.

Pro

•	 Reduces effort of page creation

Con

•	 Requires specific code in calling view/view model

Chapter 9 Advanced UI Concepts

254

�Showing a Popup

There is currently no explicit support in .NET MAUI for displaying

popups; however, the functionality does exist on each of the platforms

that .NET MAUI runs on. You can go to the lengths of implementing your

own ability to display a popup, but it would be rather involved. Instead,

the .NET MAUI Community Toolkit provides a Popup class that makes it

straightforward for you to display a popup in your application.

Pros

•	 Keeps specific code contained

•	 Provides easy return result handling

Con

•	 Brings in an extra dependency

For further reading on how to use the toolkit and its Popup class, please

refer to the documentation at https://learn.microsoft.com/dotnet/
communitytoolkit/maui/views/popup.

�The Chosen Approach
Given the pros and cons outlined above, you might guess that you will be

using the Popup class. Nope. Let’s use the overlaying-a-view approach. This

is mainly because it will help to expose you to more .NET MAUI-specific

concepts that I believe will be extremely valuable in building applications.

However, for your own work, use the approach that best fits your scenario.

I would like to emphasize that each of the above options will achieve the

results needed. In fact, there could well be more options that I haven’t

covered, and if you find one, I would love to hear about it.

Chapter 9 Advanced UI Concepts

https://learn.microsoft.com/dotnet/communitytoolkit/maui/views/popup
https://learn.microsoft.com/dotnet/communitytoolkit/maui/views/popup

255

�Adding Your Overlay View

You need to add a view to your FixedBoardPage.xaml file that will present

the option to the user to add a new widget to the board. Let’s open that

file and add the following code inside the Grid and below the

</layouts:BoardLayout> line:

<BoxView
 BackgroundColor="Black"
 Opacity="0.5"
 IsVisible="{Binding IsAddingWidget}" />
<Border
 IsVisible="{Binding IsAddingWidget}"
 HorizontalOptions="Center"
 VerticalOptions="Center"
 Padding="10">
 <VerticalStackLayout>
 <Label
 Text="Add widget"
 FontSize="20" />
 <Label
 Text="Widget" />
 <Picker
 ItemsSource="{Binding AvailableWidgets}"
 SelectedItem="{Binding SelectedWidget}"
 �SemanticProperties.Description="{Binding Text,

Source={x:Reference SelectTheWidgetLabel}}"
 �SemanticProperties.Hint="Picker containing the

possible widget types that can be added to the
board. This is a required field." />

Chapter 9 Advanced UI Concepts

256

 <Label
 Text="Preview" />
 <ContentView
 WidthRequest="250"
 HeightRequest="250" />
 <Button
 Text="Add widget"
 Command="{Binding AddWidgetCommand}"
 �SemanticProperties.Hint="Adds the selected widget

to the board. Requires the 'Select the widget'
field to be set." />

 </VerticalStackLayout>
</Border>

The code addition results in two new controls added to the parent

Grid’s children collection: a BoxView and a Border. The BoxView is added

to provide a semi-transparent overlay on top of the rest of the application,

and the Border presents the content for selecting a new widget. Adding

them after the BoardLayout means it will be rendered on top of the

BoardLayout. This ordering is referred to as Z-index, and in the majority

of .NET MAUI applications, layouts are determined by the order in which

the children are added to their parent. This means that the later the

controls are added, the higher they will appear visually. You can modify

this default behavior by using the ZIndex property where the higher the

value, the higher they will appear visually. With this knowledge, you can

add a binding between the IsVisible property of your new controls and a

property on your view model, so your view model can control whether you

are adding a widget to the board.

Let’s update your view model.

Chapter 9 Advanced UI Concepts

257

�Updating Your View Model

Since you turned on compiled bindings in a previous chapter, you will

now see that your code will not compile because you have not defined the

properties you are binding to. So open the FixedBoardPageViewModel.cs

file and make the following additions.

Add the new properties and associated backing fields into your

FixedBoardPageViewModel class.

private int addingPosition;
private string? selectedWidget;
private bool isAddingWidget;
private readonly WidgetFactory widgetFactory;

public IList<string> AvailableWidgets => widgetFactory.
AvailableWidgets;

public ICommand AddWidgetCommand { get; }
public ICommand AddNewWidgetCommand { get; }

public bool IsAddingWidget
{
 get => isAddingWidget;
 set => SetProperty(ref isAddingWidget, value);
}

public string? SelectedWidget
{
 get => selectedWidget;
 set => SetProperty(ref selectedWidget, value);
}

Chapter 9 Advanced UI Concepts

258

Update the constructor with the new WidgetFactory dependency and

set the new commands that you have added; changes are in bold.

public FixedBoardPageViewModel(
 WidgetTemplateSelector widgetTemplateSelector,
 WidgetFactory widgetFactory)
{
 WidgetTemplateSelector = widgetTemplateSelector;
 this.widgetFactory = widgetFactory;
 Widgets = new ObservableCollection<IWidgetViewModel>();
 AddWidgetCommand = new Command(OnAddWidget);
 AddNewWidgetCommand = new Command<int>(index =>
 {
 IsAddingWidget = true;
 addingPosition = index;
 });
}

In the previous code section, you set the IsAddingWidget property to

true in order to show the overlay view and you also keep a record of the

index variable, which is the Position property from the Placeholder that

was tapped.

Provide the method implementation for the AddWidgetCommand.

private void OnAddWidget()
{
 if (SelectedWidget is null)
 {
 return;
 }

 �var widgetViewModel = widgetFactory.CreateWidgetViewModel
(SelectedWidget);

Chapter 9 Advanced UI Concepts

259

 if (widgetViewModel is not null)
 {
 widgetViewModel.Position = addingPosition;
 Widgets.Add(widgetViewModel);
 }

 IsAddingWidget = false;
}

Hopefully the majority of what you just added should feel familiar. The

part that most likely doesn’t is the final OnAddWidget method. Let’s take a

deeper look at this implementation.

The SelectedWidget property is bound to your Picker in the view. You

do some initial input validation to make sure that the user has chosen a

type of widget to add; otherwise, you return out of the method.

Next, you use the new dependency (widgetFactory) to create a view

model for you.

Then you set its Position based on which placeholder was tapped

initially.

Then you add your newly created widgetViewModel to the collection of

Widgets so that it can update the UI.

Finally, you set the IsAddingWidget property to false in order to hide

the overlay view again.

�Showing the Overlay View

Now you can add the ability to programmatically show the Border that

allows your users to pick a widget and add it to the board. You already

provided a large amount of this functionality inside your Placeholder and

FixedLayoutManager classes, so you just need to hook up your view model

to this functionality. You have also just set the groundwork in your view

model, so let’s hook the components up. Open the FixedBoardPage.xaml

file again and add the following bold line:

Chapter 9 Advanced UI Concepts

260

<layouts:BoardLayout
 ItemsSource="{Binding Widgets}"
 ItemTemplateSelector="{Binding WidgetTemplateSelector}">
 <layouts:BoardLayout.LayoutManager>
 <layouts:FixedLayoutManager
 NumberOfColumns="{Binding NumberOfColumns}"
 NumberOfRows="{Binding NumberOfRows}"
 �PlaceholderTappedCommand="{Binding AddNewWidget

Command}" />
 </layouts:BoardLayout.LayoutManager>
</layouts:BoardLayout>

If you build and run your application, you can see that once you have

created a board, you can now tap or click on the Placeholder and observe

that your overlay displays. You will notice that there is no background

to your overlay, though, so it is really difficult for a user to understand

what to do. You can just set the BackgroundColor of your Border control;

however, this can lead to a number of issues. For example, if you fixed

the BackgroundColor to white and a user switches on dark mode on their

device, they would have a rather unpleasant experience. Figure 9-1 shows

how the application currently looks and highlights the issue.

Chapter 9 Advanced UI Concepts

261

Figure 9-1.  The application showing the overlay with a poor user
experience

Let’s look at how .NET MAUI provides the ability to style your

applications, which includes supporting light and dark modes.

�Styling
.NET MAUI provides the ability to style your applications. Styling in .NET

MAUI offers many advantages:

•	 Central definition of look and feel

•	 Less verbosity in your XAML/code

Chapter 9 Advanced UI Concepts

262

•	 Style inheritance

	 Styles in .NET MAUI can be defined at many different

levels, and where they are defined is extremely

important when understanding what impact they will

have. The two key distinctions between where they are

defined can be considered as

•	 Globally: These styles are added to the application’s

resources. You can see an example of this if you open

the App.xaml file. The line in bold shows that another

file (Styles.xaml) containing the styles is loaded into

the Application.Resources property. These styles

apply to all controls in the application unless otherwise

explicitly overridden.

<Application
xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 �xmlns:x="http://schemas.microsoft.com/

winfx/2009/xaml"
 xmlns:local="clr-namespace:WidgetBoard"
 x:Class="WidgetBoard.App">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 �<ResourceDictionary Source="Resources/

Styles/Colors.xaml" />
 �<ResourceDictionary Source="Resources/

Styles/Styles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Chapter 9 Advanced UI Concepts

263

•	 Locally: These styles are added to a view or page

resources property. Styles defined in this way will apply

to all controls that are children of the view or page they

are defined in.

�Examining the Default Styles
You can view this file under Resources/Styles.xaml. Let’s take a look at

the style for Border in this file:

<Style TargetType="Border">
 �<Setter Property="Stroke" Value="{AppThemeBinding

Light={StaticResource Gray200}, Dark={StaticResource
Gray500}}" />

 <Setter Property="StrokeShape" Value="Rectangle"/>
 <Setter Property="StrokeThickness" Value="1"/>
</Style>

The XAML syntax used to define a style looks rather different to

the XAML you have written so far. Let’s break it down to gain a better

understanding of what it all means.

�TargetType

To start, when defining a Style, you must define the TargetType. This

property defines which type of control the style definition targets and

therefore applies to. Defining a Style with only the TargetType property

set will apply to all controls of that type within the scope it is defined. This

is referred to as implicit styling.

Chapter 9 Advanced UI Concepts

264

If you wish to explicitly style a control, you can also add the x:Key

property. This is referred to as explicit styling. You are then required to set

the Style property on any control that wishes to use this explicit style that

you have created. You will be creating an explicit style in the “Creating a

Style” section following shortly.

�ApplyToDerivedTypes

By default, styles created explicitly apply to the type defined in the

TargetType property I just covered. If you wish to allow derived classes to

also inherit this style, you need to set the ApplyToDerivedTypes property

to true. If you have a CustomBorder that inherits from Border and you had

the following Style defined:

<Style TargetType="Border" ApplyToDerivedTypes="True">
 �<Setter Property="Stroke" Value="{AppThemeBinding

Light={StaticResource Gray200}, Dark={StaticResource
Gray500}}" />

 <Setter Property="StrokeShape" Value="Rectangle"/>
 <Setter Property="StrokeThickness" Value="1"/>
</Style>

then the Style will also be applied to your CustomBorder control. If

ApplyToDerivedTypes was set to false, it would not be applied.

�Setter

This is the part that looks and feels quite a bit different to the previous XAML

you have written. Since you are not creating controls but defining how they

will look, you must follow this syntax. Let’s look at the following example:

<Style TargetType="Label">
 <Setter Property="TextColor" Value="Black" />
</Style>

Chapter 9 Advanced UI Concepts

265

The above is not a style you would include in an application; however,

as an example it allows you to say

The Style for Label controls will set the TextColor property to Black.

Now that you have had a look at some of the key concepts that make up

a style in .NET MAUI, let’s create your own style for your overlay.

�Creating a Style
Let’s view this in action by adding the following to the Styles.xaml file.

Add this just below the existing <Style TargetType="Border"> entry.

<Style TargetType="Border" x:Key="OverlayBorderStyle">
 �<Setter Property="BackgroundColor" Value="White" />

<Setter Property="Stroke" Value="{AppThemeBinding
Light={StaticResource Gray200}, Dark={StaticResource
Gray500}}" />

 <Setter Property="StrokeShape" Value="Rectangle"/>
 <Setter Property="StrokeThickness" Value="1"/>
</Style>

The above looks very similar to the default Border style already defined

with the addition of the BackgroundColor setter.

It is also worth noting that you only need to set the values that you

wish to change from the implicit style. Therefore, your explicit style can be

reduced down to

<Style TargetType="Border" x:Key="OverlayBorderStyle">
 <Setter Property="BackgroundColor" Value="White" />
</Style>

The Stroke, StrokeShape, and StrokeThickness properties will all be

inherited from the implicit global style. This provides yet another great way

to reduce the amount of code you need to write.

Chapter 9 Advanced UI Concepts

266

Now you can use this style in your application. Open the

FixedBoardPage.xaml file and add the following line to your Border

element (change in bold):

<Border
 IsVisible="{Binding IsAddingWidget}"
 HorizontalOptions="Center"
 VerticalOptions="Center"
 Padding="10"
 Style="{StaticResource OverlayBorderStyle}">

This will result in your overlay looking far better to the user

now because it is no longer transparent. Also, consider moving the

HorizontalOptions, VerticalOptions, and Padding properties over to the

style definition. Figure 9-2 shows how much better the overlay now looks.

Figure 9-2.  The overlay with a much clearer background

Chapter 9 Advanced UI Concepts

267

What you have done here is considered bad practice, though! You

have hard-coded the BackgroundColor of your Border control in the style

definition so your application will look great on a device running in light

mode. However, as soon as the user switches to dark mode, they will have a

glaring white border showing.

The repercussions of using fixed values can include text or content

disappearing entirely from the application. Imagine that the text color

switches to white in dark mode, with you having hard-coded to a white

background of the overlay view, so the user would see no text on screen.

This would result in a terrible user experience.

.NET MAUI provides the ability to handle the different modes that a

device can run under.

�AppThemeBinding
This is an extremely valuable concept. It allows you to define different

values based on whether the device your application is running on is set

to light or dark mode. Taking the example of the OverlayBorderStyle you

previously created, you can modify the Setter for BackgroundColor to

<Setter Property="BackgroundColor" Value="{AppThemeBinding
Light={StaticResource White}, Dark={StaticResource Black}}" />

Now if a user is running in dark mode, the border overlay will be black

and the text will be visible.

You only need to apply AppThemeBinding to properties that require

a visual distinction between light and dark modes. This typically applies

to all Brush/Color properties; however, you could conceivably decide to

change the StrokeThickness of your Border control, for example.

Chapter 9 Advanced UI Concepts

268

�Further Reading
It is worth noting that this book is limited to covering the styling options

in XAML. However, .NET MAUI does provide support for CSS-based

style sheets. Go to https://docs.microsoft.com/dotnet/maui/user-
interface/styles/css.

�Triggers
.NET MAUI provides a concept called triggers. They enable you to further

enhance how your views react to changes in the view model. You are given

the ability to define actions that can modify the appearance of the UI

based on event or data changes. Triggers provide us with another way of

changing the visibility of our border overlay for adding a new widget. The

initial work will appear more verbose in the short term, but do bear with

me – it will result in a much better outcome!

There are a number of different types of triggers that can be attached

to a control, each with a varying level of functionality. You will take a brief

look at them and then dig into the one that you need for your scenario.

•	 Trigger: A Trigger represents a trigger that applies

property values, or performs actions, when the

specified property meets a specified condition.

•	 DataTrigger: A DataTrigger represents a trigger that

applies property values, or performs actions, when the

bound data meets a specified condition. The Binding

markup extension is used to monitor for the specified

condition.

•	 EventTrigger: An EventTrigger represents a trigger that

applies a set of actions in response to an event. Unlike

Trigger, EventTrigger has no concept of termination

of state, so the actions will not be undone once the

condition that raised the event is no longer true.

Chapter 9 Advanced UI Concepts

https://docs.microsoft.com/dotnet/maui/user-interface/styles/css
https://docs.microsoft.com/dotnet/maui/user-interface/styles/css

269

•	 MultiTrigger: A MultiTrigger represents a trigger that

applies property values, or performs actions, when a set

of conditions are satisfied. All the conditions must be

true before the Setter objects are applied.

�Creating a DataTrigger
In this chapter, you have added your overlay Border control and are

currently changing its visibility through a binding direct to the IsVisible

property. You can write this differently with a DataTrigger. Let’s open the

FixedBoardPage.xaml file and modify the Border control to the following:

<Border
 IsVisible="False"
 HorizontalOptions="Center"
 VerticalOptions="Center"
 Padding="10"
 Style="{StaticResource OverlayBorderStyle}">
 <Border.Triggers>
 <DataTrigger
 TargetType="Border"
 Binding="{Binding IsAddingWidget}"
 Value="True">
 <Setter
 Property="IsVisible"
 Value="True" />
 </DataTrigger>
 </Border.Triggers>

Notice that the syntax for a Trigger is very similar to a Style. You

will also notice that it looks a lot more verbose than your original simple

binding approach. If you simply want to control the IsVisible property of

Chapter 9 Advanced UI Concepts

270

a control, a trigger is overkill, in my opinion. You will not be ending here,

though, so bear with me. First, let’s break down what you have added and

then look at how you can enhance it.

First, you modify the IsVisible property binding to false. This is the

initial state of the visibility of your view.

IsVisible="False"

Next, you add the DataTrigger to the Border.Triggers property.

<DataTrigger
 TargetType="Border"
 Binding="{Binding IsAddingWidget}"
 Value="True">

Much like with styles, you define the type of control the DataTrigger

applies to. You also set the Binding property to bind to the IsAddingWidget

property on your view model. Finally, you set the Value property to true.

This all means that when the IsAddingWidget property value is set to true,

the contents of the DataTrigger will be applied.

This leads you onto the final change, which is the setter.

<Setter
 Property="IsVisible"
 Value="True" />

To repeat myself, all of this is rather verbose until you consider

that you can define actions that can be performed when your state is

entered/exited.

�EnterActions and ExitActions
As an alternative to simply defining values for properties to be set when

the IsAddingWidget property value becomes true, like in your previous

example, you can define actions that will be performed when the value

Chapter 9 Advanced UI Concepts

271

enters or exits a specific state. What exactly does this mean? Let’s take a

look at an example. You can rewrite the trigger usage from the previous

example as

<DataTrigger
 TargetType="Border"
 Binding="{Binding IsAddingWidget}"
 Value="True">
 <DataTrigger.EnterActions>
 <!—-action to perform-->
 </DataTrigger.EnterActions>
 <DataTrigger.ExitActions>
 <!—-action to perform-->
 </DataTrigger.ExitActions>
</DataTrigger>

Given the above, you can state the following:

When the property (IsAddingWidget) in the Binding enters the state

defined in Value (True), the EnterActions will be performed.

When the property (IsAddingWidget) in the Binding exits the state

defined in Value (False), the ExitActions will be performed.

You need to define an action to be performed for these scenarios now.

�Creating a TriggerAction
.NET MAUI provides the TriggerAction<T> base class that allows you to

define an action that will be performed in the enter or exit scenario. This

enables you to build a more complex behavior that can be performed

when a value changes. When creating a trigger action, you can use the base

class TriggerAction<T> provided by .NET MAUI, and then you need to

override the Invoke method. It is this method that defines what action will

be performed when the value changes. Let’s create your own action that

you can use.

Chapter 9 Advanced UI Concepts

272

�Creating ShowOverlayTriggerAction

First, you need to find a place to locate this action. Create a new folder

in the root project called Triggers and then add a new class file called

ShowOverlayTriggerAction.cs. Then you can add the following code:

namespace WidgetBoard.Triggers;

public class ShowOverlayTriggerAction :
TriggerAction<VisualElement>
{
 public bool ShowOverlay { get; set; }
 protected override void Invoke(VisualElement sender)
 {
 sender.IsVisible = ShowOverlay;
 }
}

This code doesn’t do too much right now. It will just change the

IsVisible property of the control it is attached to when the value changes.

Now you need to attach it to your AddWidgetFrame control.

�Using ShowOverlayTriggerAction

You can now add in the action to perform sections that you left when

first adding a DataTrigger to your control. Modify your code in the

FixedBoardPage.xaml file, with the changes in bold.

<DataTrigger
 TargetType="Border"
 Binding="{Binding IsAddingWidget}"
 Value="True">
 <DataTrigger.EnterActions>
 �<triggers:ShowOverlayTriggerAction

ShowOverlay="True" />

Chapter 9 Advanced UI Concepts

273

 </DataTrigger.EnterActions>
 <DataTrigger.ExitActions>
 �<triggers:ShowOverlayTriggerAction

ShowOverlay="False" />
 </DataTrigger.ExitActions>
</DataTrigger>

This can now be interpreted as when the IsAddingWidget property

value changes to true, a ShowOverlayTriggerAction will be invoked with

ShowOverlay set to true. This will result in the AddWidgetFrame control

becoming visible. Then, when the IsAddingWidget property value changes

to false, a ShowOverlayTriggerAction will be invoked with ShowOverlay

set to false. This will result in the AddWidgetFrame control becoming

invisible.

It is also worth noting that you can define triggers in styles, meaning

this type of functionality can be reused multiple times without having to

duplicate the code.

Let’s take a break from triggers for now to take a look at how you can

animate controls in .NET MAUI. Then you will return to combine triggers

and animations together to really show off the power of the action you just

created.

�Further Reading
You have only scratched the surface on the functionality that can

be achieved with triggers. I recommend checking out the Microsoft

documentation to see more ways triggers can be useful: https://learn.
microsoft.com/dotnet/maui/fundamentals/triggers.

This feels like it could be a challenging topic to show off in printed

form given the dynamic nature of an animation, but it is one of my favorite

topics so I am going to show it off as best I can. Animations provide you

with the building blocks to make your applications feel much more natural

and organic.

Chapter 9 Advanced UI Concepts

https://learn.microsoft.com/dotnet/maui/fundamentals/triggers
https://learn.microsoft.com/dotnet/maui/fundamentals/triggers

274

.NET MAUI provides two main ways to perform an animation against

any VisualElement. You will take a look at each approach and how some

animations can be built using them.

�Basic Animations
.NET MAUI ships with a set of prebuilt animations available via extension

methods. These methods provide the ability to rotate, translate, scale, and

fade a VisualElement over a period of time. Each of these methods has a

To suffix, for example, ScaleTo. It is worth noting that each of the methods

for animating is asynchronous and will therefore need to be awaited if you

wish to know when they have finished. The full list of animation methods

is as follows:

Method Description

FadeTo Animates the Opacity property of a VisualElement

RelScaleTo Applies an animated incremental increase or decrease to

the Scale property of a VisualElement

RotateTo Animates the Rotation property of a VisualElement

RelRotateTo Applies an animated incremental increase or decrease to

the Rotation property of a VisualElement

RotateXTo Animates the RotationX property of a VisualElement

RotateYTo Animates the RotationY property of a VisualElement

ScaleTo Animates the Scale property of a VisualElement

ScaleXTo Animates the ScaleX property of a VisualElement

ScaleYTo Animates the ScaleY property of a VisualElement

TranslateTo Animates the TranslationX and TranslationY

properties of a VisualElement

Chapter 9 Advanced UI Concepts

275

The overlay view you added in the previous section just shows

immediately and disappears immediately based on the IsVisible binding

you created. What if you animate your overlay to grow from nothing up to

the required size? Don’t worry about adding this code to your application

just yet. You will look over some examples and then add it to Visual Studio

in the “Combining Triggers and Animations” section. The main reason for

not adding it immediately is because the animation’s API relies on direct

access to the view-related information, and this breaks the MVVM pattern.

However, once you look over how to animate, you can take this learning

and add it into your ShowOverlayTriggerAction implementation.

The code to animate a VisualElement is surprisingly small, as you can

see in the following example:

AddWidgetFrame.Scale = 0;
await AddWidgetFrame.ScaleTo(1, 500);

First, you make sure that the AddWidgetFrame has a Scale of 0 and then

you call ScaleTo, telling it to grow to a Scale of 1 (which is 100%) over a

duration of 500 milliseconds.

All of the prebuilt animation methods apart from the ones that start

with Rel perform the animation against the VisualElement's existing

value (e.g., for ScaleTo, it will change from the existing Scale property

value). This means that it is entirely possible that no animation will take

place if both the existing property and the value provided to the method

are the same.

�Combining Basic Animations
It is entirely possible to combine the basic animations to provide much

more complex animations. There are two main ways of achieving this.

Chapter 9 Advanced UI Concepts

276

�Chaining Animations

You can chain animations together into a sequence. A common example

here is to provide the appearance of a tile being flipped over and giving a

3D effect to the user. The key detail when chaining animations is that you

await each animation method call to make sure that one animation has

finished before the next one begins.

await frame.RotateXTo(90, 100);
frame.Content.IsVisible = tileViewModel.IsSelected;
await frame.RotateXTo(0, 100);

�Concurrent Animations

In a similar way to chaining, you can perform multiple animations

concurrently by simply not awaiting each method call or alternatively

awaiting all of the calls.

AddWidgetFrame.Scale = 0;
AddWidgetFrame.IsVisible = true;
AddWidgetFrame.Opacity = 0;
await Task.WhenAll(
 AddWidgetFrame.FadeTo(1),
 AddWidgetFrame.ScaleTo(1, 500));

In fact, this animation looks like a very good contender for your actual

implementation in the ShowOverlayTriggerAction implementation.

�Cancelling Animations
Providing the ability to cancel an animation can be an extremely valuable

feature for a user. Quite often in applications, and predominantly games,

an animation will show when an action completes. Animations like this if

Chapter 9 Advanced UI Concepts

277

blocking can become tiresome for users especially if the same animation

repeats frequently. Therefore, a common pattern to follow is when the user

taps on the control being animated, it cancels the animation.

If you wish to cancel an animation, you can call the CancelAnimations

extension method on the VisualElement that you are animating.

AddWidgetFrame.CancelAnimations();

�Easings
Animations in general will move mechanically as a computer changes a

value over time. Easings allow you to move away from a linear update of

those values in order to provide a much more organic and natural motion.

.NET MAUI offers a whole host of prebuilt easings, plus there is even the

ability to build your own if you really wish to do so. Let’s take a look at the

options that .NET MAUI provides out of the box:

Easing function Description

BounceIn Bounces the animation at the beginning

BounceOut Bounces the animation at the end

CubicIn Slowly accelerates the animation

CubicInOut Accelerates the animation at the beginning and decelerates

the animation at the end

CubicOut Quickly decelerates the animation

Linear Uses a constant velocity and is the default easing function

SinIn Smoothly accelerates the animation

SinInOut Smoothly accelerates the animation at the beginning and

smoothly decelerates the animation at the end
(continued)

Chapter 9 Advanced UI Concepts

278

Easing function Description

SinOut Smoothly decelerates the animation

SpringIn Causes the animation to very quickly accelerate toward

the end

SpringOut Causes the animation to quickly decelerate toward the end

As a general guide, an easing ending with the In suffix will start the

animation slowly and speed up as it comes to a finish. An easing ending

with the Out suffix will start off quickly and slow down toward the end.

�Complex Animations
.NET MAUI provides the Animation class. This enables you to define

complex animation sequences. In fact, the prebuilt animations that you

covered in the “Basic Animations” section are built using this class inside

the .NET MAUI code. Using this class, it is possible to animate any visual

property of a VisualElement; for example, you can animate a change in

BackgroundColor or TextColor.

The Animation class provides the ability to define simple animations

through to really quite complex animations. Take a quick look at how

the ScaleTo animation can be implemented to understand what the

class offers.

�Recreating the ScaleTo Animation

You can also animate the scale of your AddWidgetFrame control with the

following:

Chapter 9 Advanced UI Concepts

279

public void ScaleTo()
{
 �var animation = new Animation(v => AddWidgetFrame.

Scale = v, 0, 1);
 animation.Commit(AddWidgetFrame, "ScaleTo");
}

When creating an instance of the Animation class, you provide the

following parameter:

v => AddWidgetFrame.Scale = v

This is the callback parameter, and it allows you to define what

property is set during the animation.

The next parameter is start. This is the starting value that will be

passed into the callback lambda you defined in the first parameter. In your

example, you set it to 0, meaning the AddWidgetFrame control will not be

visible because it has a scale of 0.

The final parameter you pass in is end. This is the resulting value that

will be passed into the callback lambda.

The animation will only begin when you call the Commit method. This

method also allows you to define how long it should take as well as how

often to call the callback parameter you defined.

animation.Commit(AddWidgetFrame, "ScaleTo", length: 2000);

This code shows the simplest type of animation you can create

within .NET MAUI. It is entirely possible to create much more complex

animations. To achieve this, you need to create an animation and then

add child animations in order to define the changes for each property and

different sequences in the animation.

Chapter 9 Advanced UI Concepts

280

�Creating a Rubber Band Animation

As an example on how to build a complex animation, I would like to show

you one of my favorite animations: the rubber band animation. This

animation simulates the VisualElement being pulled horizontally, letting

go, and then bouncing back to its original shape just like a rubber band

would. Figure 9-3 shows what it would look like, albeit in motion.

Figure 9-3.  The distinguishing frames from the animation you will
be building

Let’s build the animation with the Animation class using the

understanding you gained in the previous section.

public void Rubberband(VisualElement view)
{
 var animation = new Animation();
 �animation.Add(0.00, 0.30, new Animation(v => view.

ScaleX = v, 1.00, 1.25));
 �animation.Add(0.00, 0.30, new Animation(v => view.

ScaleY = v, 1.00, 0.75));

Chapter 9 Advanced UI Concepts

281

 �animation.Add(0.30, 0.40, new Animation(v => view.
ScaleX = v, 1.25, 0.75));

 �animation.Add(0.30, 0.40, new Animation(v => view.
ScaleY = v, 0.75, 1.25));

 �animation.Add(0.40, 0.50, new Animation(v => view.
ScaleX = v, 0.75, 1.15));

 �animation.Add(0.40, 0.50, new Animation(v => view.
ScaleY = v, 1.25, 0.85));

 �animation.Add(0.50, 0.65, new Animation(v => view.
ScaleX = v, 1.15, 0.95));

 �animation.Add(0.50, 0.65, new Animation(v => view.
ScaleY = v, 0.85, 1.05));

 �animation.Add(0.65, 0.75, new Animation(v => view.
ScaleX = v, 0.95, 1.05));

 �animation.Add(0.65, 0.75, new Animation(v => view.
ScaleY = v, 1.05, 0.95));

 �animation.Add(0.75, 1.00, new Animation(v => view.
ScaleX = v, 1.05, 1.00));

 �animation.Add(0.75, 1.00, new Animation(v => view.
ScaleY = v, 0.95, 1.00));

 �animation.Commit(view, "RubberbandAnimation",
length: 2000);

}

Yes, I know this looks quite different to the previous animation you

built. Let’s deconstruct the parts that feel unfamiliar.

animation.Add(0.00, 0.30, new Animation(v => view.ScaleX = v,
1.00, 1.25));
animation.Add(0.00, 0.30, new Animation(v => view.ScaleY = v,
1.00, 0.75));

Chapter 9 Advanced UI Concepts

282

The two lines above define the first transition in your animation. You

see that the ScaleX property will change from 1.00 (100%) to 1.25 (125%)

and the ScaleY property will change from 1.00 (100%) to 0.75% (75%) of

the control’s current size. This provides the appearance that the view is

being stretched. The key new part for you is the use of the Add method and

the first two parameters. This allows you to add the animation defined

as the third parameter as a child of the animation it is being added to.

The result is that when you Commit the main animation, all of the child

animations will be executed based on the sequence you defined in these

two first parameters. Let’s cover what these parameters mean.

The first parameter is the beginAt parameter. This determines when

the child animation being added will begin during the overall animation

sequence. So in the example of your first line, you define 0.00, meaning it

will begin as soon as the animation starts.

The second parameter is the finishAt parameter. This determines

when the child being added will finish during the overall animation

sequence. So in the example of your first line, you define 0.30, meaning it

will end 30% into the animation sequence.

Both the beginAt and finishAt parameters should be supplied

as a value between 0 and 1 and considered a percentage in the overall

animation sequence. You will also notice that I tend to include the

decimal places even when they are 0; this really makes it easier to read the

animation sequence as it ensures that all of the code is indented in the

same way.

Finally, you call the Commit method as before to begin the animation

sequence.

Now that you have covered building animations and some possible

examples of using them, let’s combine them with your trigger knowledge

to really make your AddWidgetFrame look great when it becomes visible.

Chapter 9 Advanced UI Concepts

283

�Combining Triggers and Animations
Animations are a really powerful tool, but they require view knowledge.

This is where having the ability to trigger them from a trigger allows you

to keep with the MVVM approach and keep your view and view model

cleanly separated.

Now that you have covered how to apply an animation to your overlay

view and looked at separating view from view model through the use of

triggers, you can combine the two together to trigger the animation and

keep the separation.

Let’s return to the ShowOverlayTriggerAction.cs file and add in

the animation from the “Concurrent Animations” section (changes are

in bold).

namespace WidgetBoard.Triggers;

public class ShowOverlayTriggerAction :
TriggerAction<VisualElement>
{
 public bool ShowOverlay { get; set; }
 protected override async void Invoke(VisualElement sender)
 {
 if (ShowOverlay)
 {
 sender.Scale = 0;
 sender.IsVisible = true;
 sender.Opacity = 0;
 await Task.WhenAll(
 sender.FadeTo(1),
 sender.ScaleTo(1, 500, Easing.SpringOut));
 }

Chapter 9 Advanced UI Concepts

284

 else
 {
 await sender.ScaleTo(0, 500, Easing.SpringIn);
 sender.Opacity = 0;
 sender.IsVisible = false;
 }
 }
}

The trigger action now provides two key visual changes when the

ShowOverlay property value changes. When the property becomes true,

the AddWidgetFrame control will both fade in over 250 milliseconds and

scale up from 0 to 1 over 500 milliseconds. You also make use of the

Easing.SpringOut option to give a slightly more fluid feel to the changes

in the animation.

When ShowOverlay becomes false, you just reverse the scale

animation to show it shrink. Once the animation has completed, you then

make sure that the control is no longer visible.

This concludes the sections on triggers and animations. You have seen

how they can help to both simplify the views and view models you create

while at the same time provide some really great functionality to make

your applications feel alive. I would recommend taking the application for

a spin and observing the animations in action; sadly we can’t show that

functionality off in printed form.

�Behaviors
Quite often as developers we need to extend functionality of controls;

there are typically two approaches for this when you consider doing this to

control:

Chapter 9 Advanced UI Concepts

285

	 1.	 Inheritance: You create a subclass of the control and

add your functionality in there.

	 2.	 Composition: You create a class that can be

used/reused by other classes in order to share

functionality.

There are positives and negatives for both approaches and quite often

reasons for choosing either. In Chapter 7, when we built our BoardLayout

control we inherited from .NET MAUI controls, this was using inheritance

to extend existing functionality. In this section, we will be using

composition and creating a behavior that can be attached to controls.

In our application, we provide the ability for users to create their

own boards by providing a name, number of columns, and number of

rows. Currently the application enables/disables the Save button based

on whether the user has entered a name; we will now take this further to

provide some styling to highlight which field is invalid.

�Creating Our Behavior
First, let’s create a new folder in our project.

•	 Right-click the WidgetBoard project.

•	 Select Add ➤ New Folder.

•	 Click Add.

Next let’s add a new class to the Behaviors folder and call it

RequiredStringValidationBehavior.

In .NET MAUI, we attach behaviors to controls, and it is during the

attaching that the behavior is responsible for initializing itself, and then the

opposite is true when detaching – the behavior is responsible for tidying

up to ensure the code does not lead to a memory leak. Let’s incrementally

add some code to our new class and see how the above can be applied.

Chapter 9 Advanced UI Concepts

286

First, we make our class inherit from the Behavior base class provided

by .NET MAUI; see the changes in bold:

public class RequiredStringValidationBehavior : Behavior<Entry>
{
}

Next we can add two properties to our class; these will allow

developers to define a valid and invalid Style.

 public Style? ValidStyle { get; set; }

 public Style? InvalidStyle { get; set; }

Then we can override the OnAttachedTo and OnDetachingFrom

methods to initialize and tidy up, respectively. You will notice there are two

overloads for each of the methods named above; one takes the Entry type

and one takes BindableObject. We want to use the Entry ones because we

want to access the TextChanged event on the Entry class.

 protected override void OnAttachedTo(Entry bindable)
 {
 base.OnAttachedTo(bindable);

 bindable.TextChanged += BindableOnTextChanged;
 }

 protected override void OnDetachingFrom(Entry bindable)
 {
 base.OnDetachingFrom(bindable);

 bindable.TextChanged -= BindableOnTextChanged;
 }

Finally, we can handle the TextChanged event and set the Style

property on the Entry that this behavior is attached to, to either the

InvalidStyle or the ValidStyle based on whether the user has entered

any text.

Chapter 9 Advanced UI Concepts

287

 �private void BindableOnTextChanged(object? sender,
TextChangedEventArgs e)

 {
 if (sender is Entry entry &&
 InvalidStyle is not null &&
 ValidStyle is not null)
 {
 �entry.Style = string.IsNullOrWhiteSpace(e.

NewTextValue) ? InvalidStyle : ValidStyle;
 }
 }

Behaviors can be attached to multiple controls at once; therefore, it is
recommended to consider this detail when designing your behavior.

�Attaching Our Behavior
Now that we have created a behavior, we need to proceed to using it. Open

up the BoardDetailsPage.xaml file and add the following code between the

ContentPage and Border elements:

<ContentPage.Resources>
 <Style TargetType="Entry" x:Key="ValidEntryStyle">
 �<Setter Property="BackgroundColor"

Value="Transparent" />
 </Style>

 <Style TargetType="Entry" x:Key="InvalidEntryStyle">
 <Setter Property="BackgroundColor" Value="Red" />
 </Style>
</ContentPage.Resources>

Chapter 9 Advanced UI Concepts

288

We covered styles earlier; here we are adding a local Style which will

only apply in the current page. Next we need to attach the behavior and

assign the styles to it.

We can delete the following:

<Entry Text="{Binding BoardName}">

and replace it with

<Entry Text="{Binding BoardName}">
 <Entry.Behaviors>
 <behaviors:RequiredStringValidationBehavior
 ValidStyle="{StaticResource ValidEntryStyle}"
 �InvalidStyle="{StaticResource

InvalidEntryStyle}" />
 </Entry.Behaviors>
</Entry>

This creates a new instance of the

RequiredStringValidationBehavior class and attaches it to the

name Entry.

This concludes how to create a relatively simple behavior and attach it

to a control in our application. For much more complex behaviors, I would

thoroughly recommend making use of the .NET MAUI Community Toolkit,

which provides a rich set of behaviors, including a more advanced version

of the behavior we have created here.

�Taking the Application for a Spin
We can now run the application and observe that when adding a new

board, initially the name field will not show the invalid style; this is

considered a nice approach for users so they aren’t bombarded with a

Chapter 9 Advanced UI Concepts

289

lot of red/warnings on the screen before they have started entering data.

You usually only show them validation once they have started typing.

Figure 9-4 shows the name entry with a red background after the user has

deleted all text.

Figure 9-4.  The name entry with a red background after the user has
deleted all text

The user can then enter text into the name field. Figure 9-5 shows the

name entry with a white background after the user has entered some text.

Chapter 9 Advanced UI Concepts

290

Figure 9-5.  The name entry with a red background after the user has
deleted all text

�Fonts
We covered the topic of fonts in Chapter 3, but in this chapter, we are

going to put it into action and apply a custom font to the clock widget. I

always like the old digital display to show a clock. Sadly due to licensing

issues, I haven’t found a free font that exactly matches the digital display.

The best I could find is the VT323 font. For the purpose of including it in

your application, you can download it from https://fonts.google.com/
specimen/VT323 or feel free to choose any other font that you prefer. Once

you have a font downloaded, let’s proceed to using it in the application.

Chapter 9 Advanced UI Concepts

https://fonts.google.com/specimen/VT323
https://fonts.google.com/specimen/VT323

291

�Embed the Font
The first step is to embed the font in the application; this is just a case for

placing the .ttf or .otf file into the /Resources/Fonts/ folder.

�Configure the Font
The next step is to configure it for use within .NET MAUI; you can do this

by opening the MauiProgram.cs file and adding the following line into the

ConfigureFonts method:

fonts.AddFont("VT323-Regular.ttf", "VT323");

This makes the font from the VT323-Regular.ttf file available for use

under the alias of “VT323”.

�Use the Font
The next step is to make use of the new font in the ClockWidgetView.xaml

file. Let’s open that file and add the following line onto the Label element:

FontFamily="VT323"

The above matches the provided FontFamily name to the alias we

provided when configuring the font. Let’s see how this looks.

�Taking the Application for a Spin
If we open the application one last time in this chapter, navigate to a board,

and add the clock widget to the board, we will see that the clock widget

now renders the new font. Figure 9-6 shows the clock widget rendering the

new font.

Chapter 9 Advanced UI Concepts

292

Figure 9-6.  The clock widget rendering the new VT323 font

You should notice that the font chosen is a monospace font, which

means all characters take up the same space; this is especially useful in

this scenario because it will prevent the text from moving from side to side

when the time changes.

�Summary
In this chapter, you have

•	 Provided the ability to add a widget to a board

•	 Covered the different options available when showing

an overlay

Chapter 9 Advanced UI Concepts

293

•	 Explored how you can define styling information for

your application

•	 Learned how to handle devices running in light and

dark modes

•	 Learned how to apply triggers to enhance your UI

•	 Covered how to animate parts of your application

•	 Explored what happens when you combine triggers

and animations

•	 Created and attached a behavior

•	 Embedded a font

In the next chapter, you will

•	 Learn about the different types of local data

•	 Discover what .NET MAUI offers in terms of local file

storage locations and when to use each one

•	 Gain an understanding of database technologies and

apply two different options

•	 Modify your application to save and load the boards

your users create

•	 Gain an understanding of the options for storing small

bits of data or preferences

•	 Add the ability to record the last opened board

•	 Gain an understanding of the options for storing small

bits of data securely or SecureStorage

Chapter 9 Advanced UI Concepts

294

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/
tree/main/ch09.

�Extra Assignment
I think you can take these animations to another level and really make your

application feel alive! Try the following possible extensions!

�Animate the BoxView Overlay
You’ve added an animation to present your Border with the widget

selection details inside. A nice further enhancement on this would be

to also animate the BoxView that you are using as your semi-transparent

overlay. I personally think a nice FadeTo animation would work well, but I

would love to hear what works best for you.

�Animate the New Widget
To really make the application feel alive, you could consider animating

each widget as it is added onto the board. You have the Widgets_
ChildAdded method inside your BoardLayout.xaml.cs file where you set

the Position. You could consider expanding this method implementation

to also animate the new widget. Perhaps you could make the new widget

scale up similar to how your Border presents.

�Source Code
I would love for you to have an attempt at this extra assignment, but I have

also provided the source code. The source code for this extra assignment

can be found on the GitHub repository at https://github.com/Apress/
Introducing-.NET-MAUI-2nd-ed/tree/main/ch09-extra.

Chapter 9 Advanced UI Concepts

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch09
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch09
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch09-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch09-extra

295© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_10

CHAPTER 10

Local Data

�Abstract
In this chapter, you will learn about the different types of local data, what

they are best used for, and how to apply them in your application. The

options will include understanding when and where to store data that

needs to be kept secure.

You will modify your application to store the boards that your user

creates so that they can be displayed in the slide-out menu and also be

opened. You will also record the last opened board so that when returning

to the application, this board will be presented to the user.

�What Is Local Data?
When building an application, whether it is targeted at a single or at

multiple platforms, you will very likely need to store data that represents

the state of the application. The types of data you will need to store can

vary between storing “simple” settings, caching files/data, and even storing

a full set of data inside a local database. These types of data are called local

data since they live on the device that your application is running on. Data

that comes from a remote endpoint is called remote data, and this will be

covered in Chapter 11.

https://doi.org/10.1007/979-8-8688-1189-0_10#DOI

296

.NET MAUI provides multiple options when you want to store data

locally on a device. Each option is better suited to a specific purpose and

size of data. Here is a brief overview of those options:

•	 File system: Stores loose files directly on the device

through file system access

•	 Database: Stores data in a file optimized for access

•	 Preferences: Stores data in key-value pairs

•	 Secure storage: Stores data in key-value pairs like

preferences but stores them in a secure location on

the device

�File System
.NET MAUI provides some helpful abstractions over the multiple platforms

that it supports. One such abstraction is the FileSystem helper class. It

comes from the old Xamarin.Essentials library and now is a core part of

.NET MAUI. It allows you to obtain useful bits of information to help with

common tasks involving the file system.

Let’s take a look at the properties the FileSystem class offers you as it

helps to know when they should be used and for what type of data.

�Cache Directory
You have no need to cache anything as part of the application we’re

building in this book; however, I feel this is a valuable piece of information

to mention. This property enables you to get the most appropriate location

to store cache data. You can store any type of data in this directory.

Typically you store it when you want to persist it longer than just holding

Chapter 10 Local Data

297

it in memory, but your application must not rely on this data to function

because the operating system can and will purge the contents of this

directory.

�App Data Directory
The AppDataDirectory property provides the app’s top-level directory

for storing any files. These files are backed up with the operating system

syncing framework (e.g., iCloud for Apple devices, Google Drive for

Android, and OneDrive for Windows).

This property is precisely what you are going to use when creating and

opening your database files in the next section. So let’s set up the bits that

you will need.

The FileSystem helper class provides a set of static properties,

meaning you can simply write

var appDataDirectory = FileSystem.AppDataDirectory;

However, as you have discovered already in this book, it does not

lend itself well to unit testing. Instead, you can rely on the IFileSystem

interface and register the .NET MAUI implementation with your app

builder. Let’s open up your MauiProgram.cs file and add the following line

into the CreateMauiApp method:

builder.Services.AddSingleton(FileSystem.Current);

This will register the FileSystem.Current property as the IFileSystem

interface, so whenever you state that your classes depend on IFileSystem,

they will be provided with the FileSystem.Current instance.

Now that you have covered FileSystem and are ready to create your

database files, you can learn about database access in .NET MAUI.

Chapter 10 Local Data

298

�Database
A database is a collection of data that is organized. In a database, data

is organized or structured into tables consisting of rows and columns.

Databases are a much better approach than storing data in files. The

ability to index the data makes it easier to query and manipulate. There

are different kinds of databases, ranging from relational databases to

distributed databases, cloud databases, and NoSQL databases. In this

chapter, you will focus on relational and NoSQL databases.

Every application I have ever built has required some form of database,

and I suspect that most of the applications that you will build will also

require one. In fact, a customer once insisted that we build them an

application without a database until we helped them understand the true

value that a database provides. A database really provides value when you

need to link data together or filter and sort the data in an efficient manner.

In your application, you are going to provide the ability to save a board

and return a list of boards that the user has created. You will also provide

the ability to store where the widgets have been placed so that they will

be remembered when a user loads the board back up. This means that

we will need to store information about a widget and the board that they

belong to. There are many ways to structure this, and if you are not familiar

with database design approaches and how to optimize the design, I would

strongly recommend reading up on the subject along with database

normalization. Figure 10-1 shows the entity relationship diagram for the

database you will be creating.

Figure 10-1.  The entity relationship diagram of your
database models

Chapter 10 Local Data

299

To abstract this approach slightly, you will be using the repository

pattern.

�Repository Pattern
The repository pattern allows you to hide all the logic that deals with

creating, reading, updating, and deleting (also known as CRUD) entities

within your application. By using this pattern, it allows you to keep all

the knowledge around how entities are loaded, saved, and more in a

single place. This has the added benefit that if you want to completely

change where your data is loaded from, you only need to change the

implementation inside the repository. It also allows you to provide mock

implementations when wanting to perform things like unit testing and you

don’t want to have to rely on an actual database existing. The repository

pattern will also work well in this application due to the number of

different parts of the application that perform the same or similar things

(e.g., loading a list of boards). Having a single repository that does all of the

database-related activities makes it easier to maintain as the application

grows in size and complexity.

Let’s add a new folder called Data and then add an interface for your

repository to that folder called IBoardRepository. Change the code to look

as follows:

using WidgetBoard.Models;

namespace WidgetBoard.Data;

public interface IBoardRepository
{
 void CreateBoard(Board board);

 void CreateBoardWidget(BoardWidget boardWidget);

 void DeleteBoard(Board board);

Chapter 10 Local Data

300

 IReadOnlyList<Board> ListBoards();

 Board? LoadBoard(int boardId);

 void UpdateBoard(Board board);
}

Now that you have defined your interface, you can update your

application’s code base to use this interface when loading and saving

your boards.

�Creating a Board

Thankfully our application only provides one location to create a board; I

would like to argue that makes for a good design practice because it keeps

the creation logic in a single place.

The first place you will update is your BoardDetailsPageViewModel

class, which provides support for creating a new board. Open up the class

and make the following modifications.

Add a new IBoardRepository field.

private readonly IBoardRepository boardRepository;

Assign a valid instance to the boardRepository field; the modifications

are in bold.

public BoardDetailsPageViewModel(
 ISemanticScreenReader semanticScreenReader,
 IBoardRepository boardRepository)
{
 this.semanticScreenReader = semanticScreenReader;
 this.boardRepository = boardRepository;
 SaveCommand = new Command(
 () => Save(),
 () => !string.IsNullOrWhiteSpace(BoardName));
}

Chapter 10 Local Data

301

Use the boardRepository field when saving; the modifications are

in bold.

private async void Save()
{
 var board = new Board
 {
 Name = BoardName,
 NumberOfColumns = NumberOfColumns,
 NumberOfRows = NumberOfRows
 };

 this.boardRepository.CreateBoard(board);
 �semanticScreenReader.Announce($"A new board with the name

{BoardName} was created successfully.");

 await Shell.Current.GoToAsync(
 RouteNames.FixedBoard,
 new Dictionary<string, object>
 {
 { "Board", board }
 });
}

That concludes the changes required to provide support for creating

a board in the application. Let’s move onto loading the list of boards from

the repository.

�Listing Your Boards

In the previous chapters, you just added a fixed list of boards and

added them to the Boards collection in your AppShellViewModel,

BoardListPageViewModel, and BoardSearchHandler classes. Now you

are going to modify those classes so they can be populated by the boards

Chapter 10 Local Data

302

the user creates and you store in the database. Let’s do each one in turn

because they each have a slightly different approach needed to update

them to follow a good practice.

�Load the List in AppShellViewModel

Open the AppShellViewModel.cs file and make the following changes.

Add a field for your IBoardRepository.

private readonly IBoardRepository boardRepository;

Modify your constructor to use the IBoardRepository as a

dependency.

public AppShellViewModel(
 IBoardRepository boardRepository)
{
 this.boardRepository = boardRepository;
}

Load the list of boards and populate your collection.

public void LoadBoards()
{
 Boards.Clear();

 var boards = this.boardRepository.ListBoards();
 foreach (var board in boards)
 {
 Boards.Add(board);
 }
}

There is a further change that you need to make in order to allow your

AppShellViewModel class to actually load the board. You need to hook into

some of the lifecycle events that apply to Pages in .NET MAUI. AppShell

Chapter 10 Local Data

303

inherits from Page, which means you get full access to those lifecycle

events. The specific event you care about now is the OnAppearing event. It

is called when your page is displayed on screen.

The OnAppearing method can be called multiple times during

the lifetime of the page, so it is recommended to make your method

idempotent or check whether it has been called before in order to prevent

odd behavior when called a second time.

OnAppearing is a great choice for your scenario because it will result

in your code being executed every time the view appears; this can be

every time your flyout menu is opened. This provides you with the ability

to refresh your list of boards every time the user opens the flyout menu.

The main reason it is fine for your scenario is because you will be loading

data from a local database with a limited number of boards to load, so it

will be pretty quick. In scenarios where you are loading from an external

web service, it can take much more time to perform it, and therefore, you

may wish to maintain some level of caching and prevent calling the web

service every time the view appears. A better option under this scenario

and probably most typical scenarios in .NET MAUI applications is to use

the OnNavigatedTo method.

Let’s open your AppShell.xaml.cs file and make use of this

lifecycle method.

protected override void OnAppearing()
{
 base.OnAppearing();
 ((AppShellViewModel)BindingContext).LoadBoards();
}

When the method gets called, you use the newly added LoadBoards

method on your view model. The main reason you hook into this lifecycle

event is when you eventually try to navigate to the last used board in the

LoadBoards method, you need to make sure the application has started

rendering; otherwise, the navigation will fail.

Chapter 10 Local Data

304

�Load the List in BoardListPageViewModel

These changes will look very familiar to the previous section; we are

repeating them to make sure nothing gets missed, and then you will make

use of a different approach when calling the LoadBoards method.

Open the BoardListPageViewModel.cs file and make the following

changes.

Add a field for your IBoardRepository.

private readonly IBoardRepository boardRepository;

Modify your constructor to use the IBoardRepository as a

dependency.

public BoardListPageViewModel (
 IBoardRepository boardRepository)
{
 this.boardRepository = boardRepository;
}
Load the list of boards and populate your collection.
public void LoadBoards()
{
 Boards.Clear();

 var boards = this.boardRepository.ListBoards();
 foreach (var board in boards)
 {
 Boards.Add(board);
 }
}

As we learned in the previous section, it is typically much better

practice to use the OnNavigatedTo method rather than the OnAppearing

method to load data. This is due to the fact that OnAppearing can

Chapter 10 Local Data

305

be called multiple times during the lifetime of a page, which can

introduce unexpected behavior. Therefore, you will be making use of the

OnNavigatedTo method in the BoardListPage.xaml.cs file; let’s open the file

and make the following changes:

protected override void OnNavigatedTo(NavigatedToEvent
Args args)
{
 base.OnNavigatedTo(args);
 ((BoardListPageViewModel)BindingContext).LoadBoards();
}

�Load the List in BoardSearchHandler

This is starting to feel a little repetitive right? I agree; don’t worry, we

aren’t going to repeat the same steps from before, because we can actually

reuse the exact code from the previous section! Thankfully because

the BoardSearchHandler class is a descendant of the BindableObject

property, we can add a BindableProperty onto the class just like we did

in Chapter 6 and bind to the Boards property we are already populating

in the BoardListPageViewModel class. Let’s apply these in a step-by-step

process now.

Open the BoardSearchHandler.cs file and make the following changes:

–– Delete the boards field that was being created and

initialized with three hard-coded boards.

–– Add the following BindableProperty:

public static readonly BindableProperty
BoardsProperty =
 BindableProperty.Create(
 nameof(Boards),
 typeof(ObservableCollection<Board>),
 typeof(BoardSearchHandler));

Chapter 10 Local Data

306

public ObservableCollection<Board> Boards
{
 �get => (ObservableCollection<Board>)

GetValue(BoardsProperty);
 set => SetValue(BoardsProperty, value);
}

–– Change the OnQueryChanged method implementation

to use the new Boards property (change in bold), and

yes it is just a case of changing a single character.

protected override void OnQueryChanged(string oldValue,
string newValue)

{

 base.OnQueryChanged(oldValue, newValue);

 if (string.IsNullOrWhiteSpace(newValue))

 {

 ItemsSource = null;

 }

 else

 {

 ItemsSource = Boards

 �.Where(board => board.Name.
Contains(newValue, StringComparison.
CurrentCultureIgnoreCase))

Chapter 10 Local Data

307

 .ToList<Board>();

 }

}

That was a different set of changes to the previous loading of data up,

but quite often you will find there are handy ways to share data that has

already been loaded into your application. This makes it possible to build

apps that will perform better and consume less memory due to the nature

of sharing what has already been loaded.

The final change is to open the BoardListPage.xaml file and make the

following modification (in bold):

<Shell.SearchHandler>
 <widgetBoard:BoardSearchHandler
 Boards="{Binding Boards}"
 Placeholder="Enter board name"
 ShowsResults="True"
 DisplayMemberName="Name" />
</Shell.SearchHandler>

This will now populate our new Boards property on the

BoardSearchHandler class with the Boards value from the

BoardListPageViewModel class.

�Loading a Board

Up until this point you have relied on passing the Board into the

FixedBoardPageViewModel and displaying the details of that. The loading

process would become rather inefficient if you were to load all boards and

the associated BoardWidgets when listing all boards in the system, so you

need to do this in a two-step process: first, list the boards as you did in the

Chapter 10 Local Data

308

previous section and, second, load the board in the view model. This will

be a slightly involved process, so let’s walk through it step by step. Open

the FixedBoardPageViewModel.cs file and make the following changes.

Add the following fields to store the board that is loaded and the

repository to perform the load:

private Board? board;
private readonly IBoardRepository boardRepository;

In your constructor, add the board repository dependency and assign

to the newly created field. Changes are in bold.

public FixedBoardPageViewModel(
 WidgetTemplateSelector widgetTemplateSelector,
 WidgetFactory widgetFactory,
 IBoardRepository boardRepository)
{
 WidgetTemplateSelector = widgetTemplateSelector;
 this.widgetFactory = widgetFactory;
 this.boardRepository = boardRepository;

 Widgets = new ObservableCollection<IWidgetViewModel>();

 AddWidgetCommand = new Command(OnAddWidget);
 AddNewWidgetCommand = new Command<int>(index =>
 {
 IsAddingWidget = true;
 addingPosition = index;
 });
}

Chapter 10 Local Data

309

Now let’s load the Board inside your ApplyQueryAttributes method.

The changes are in bold.

public void ApplyQueryAttributes(IDictionary<string,
object> query)
{
 var boardParameter = query["Board"] as Board;
 board = boardRepository.LoadBoard(boardParameter.Id);

 if (board is not null)
 {
 BoardName = board.Name;
 NumberOfColumns = board.NumberOfColumns;
 NumberOfRows = board.NumberOfRows;

 foreach (var boardWidget in board.BoardWidgets)
 {
 �var widgetViewModel = widgetFactory.CreateWidget

ViewModel(boardWidget.WidgetType);

 if (widgetViewModel is null)
 {
 continue;
 }

 widgetViewModel.Position = boardWidget.Position;
 Widgets.Add(widgetViewModel);
 }
 }
}

Chapter 10 Local Data

310

Next, add the ability to save a widget’s position on the board.

private void SaveWidget(IWidgetViewModel widgetViewModel)
{
 if (board is null)
 {
 return;
 }

 var boardWidget = new BoardWidget
 {
 BoardId = board.Id,
 Position = widgetViewModel.Position,
 WidgetType = widgetViewModel.Type
 };
 boardRepository.CreateBoardWidget(boardWidget);
}

The above method will create a new BoardWidget model class and save

it into the database for you.

Finally, you need to call the SaveWidget method. For the purpose of

your application, you are going to provide an autosave feature, so each

time a widget is added to the board, you will save it immediately to the

database. In order to achieve this, you just need to add the bold line into

your AddWidget method.

private void OnAddWidget()
{
 if (SelectedWidget is null)
 {
 return;
 }

 �var widgetViewModel = widgetFactory.CreateWidgetViewModel(
SelectedWidget);

Chapter 10 Local Data

311

 if (widgetViewModel is not null)
 {
 widgetViewModel.Position = addingPosition;
 Widgets.Add(widgetViewModel);

 SaveWidget(widgetViewModel);
 }

 IsAddingWidget = false;
}

You can’t run your code yet because you don’t have an implementation

of your IBoardRepository interface, so let’s look at two different database

options that will allow you to provide an implementation for your

IBoardRepository.

�SQLite
SQLite is a lightweight cross-platform database that has become the

go-to option for providing database support in mobile applications. The

database is stored locally in a single file on the device’s file system.

SQLite is supported natively by Android and iOS; however, they require

access via C++. There are several C# wrappers around the native SQLite

engine that .NET developers can use. The most popular choice is the C#

wrapper called SQLite-net.

�Installing SQLite-net

In order to install and use SQLite-net, you need to install the NuGet

package called Sqlite-net-pcl. You may notice the extra -pcl suffix in the

NuGet package name and find this confusing. This is an artifact of an old

piece of technology used in Xamarin.Forms applications. The name has

been retained, but don’t worry; this is the correct package for adding to a

.NET MAUI project.

Chapter 10 Local Data

312

You can do this by following these steps:

	 1.	 Right-click the WidgetBoard project.

	 2.	 Click Manage NuGet Packages.

	 3.	 In the Search field, enter Sqlite-net-pcl.

	 4.	 Select the Sqlite-net-pcl package and select Add
Package.

	 5.	 A confirmation dialog will show. Review and accept

the license details if you are happy.

�Using SQLite-net

The first step is to create your IBoardRepository implementation. Add a

new class file called SqliteBoardRepository in your Data folder, and make

it implement your IBoardRepository interface.

using SQLite;
using WidgetBoard.Models;

namespace WidgetBoard.Data;

public class SqliteBoardRepository : IBoardRepository
{
 public void CreateBoard(Board board)
 {
 throw new NotImplementedException();
 }
 public void CreateBoardWidget(BoardWidget boardWidget)
 {
 throw new NotImplementedException();
 }

Chapter 10 Local Data

313

 public void DeleteBoard(Board board)
 {
 throw new NotImplementedException();
 }
 public IReadOnlyList<Board> ListBoards()
 {
 throw new NotImplementedException();
 }
 public Board? LoadBoard(int boardId)
 {
 throw new NotImplementedException();
 }
 public void UpdateBoard(Board board)
 {
 throw new NotImplementedException();
 }
}

You also need to register your implementation with the app

builder in MauiProgram.cs. You can add the following line into the

CreateMauiApp method:

builder.Services.AddTransient<IBoardRepository,
SqliteBoardRepository>();

�Connecting to an SQLite Database

As mentioned, an SQLite database is contained within a single file, so

when connecting to the database, you need to provide the path to that file.

You can do this through the SqliteConnection class. Note that if you wish

to make use of async/await, you can use the SqliteAsyncConnection class.

Let’s edit your repository class to support opening a connection to your

database.

Chapter 10 Local Data

314

Add a field for the database connection.

private readonly SQLiteConnection connection;

Add a constructor to open the connection.

public SqliteBoardRepository(IFileSystem fileSystem)
{
 �var dbPath = Path.Combine(fileSystem.AppDataDirectory,

"widgetboard_sqlite.db");
 connection = new SQLiteConnection(dbPath);
}

Here you make use of the IFileSystem implementation you registered

in the previous section. Then you make use of it to determine where to

store your database file. Finally, you open a connection using the path to

your database file. Note that if the file does not exist, one will be created

for you.

�Mapping Your Models

The SQLite-net library provides the ability to define mapping information

in your model classes that will ultimately be used to create your table

definition automatically for you. There is a rich set of options ranging from

setting a PrimaryKey through to defining if a column has a MaxLength

or even if it needs to be Unique. Open your Board.cs file and make the

following modifications in bold:

using SQLite;

namespace WidgetBoard.Models;

public class Board
{
 [PrimaryKey, AutoIncrement]

Chapter 10 Local Data

315

 public int Id { get; set; }
 public string Name { get; init; }
 public int NumberOfColumns { get; init; }
 public int NumberOfRows { get; init; }
 [Ignore]
 �public IReadOnlyList<BoardWidget> BoardWidgets { get;

set; } = [];
}

You add a new ID column, marking it as the PrimaryKey, and state

that it will AutoIncrement, meaning that SQLite-net will manage the ID

generation for you. You have also added the BoardWidgets property and

marked it with the Ignore attribute; this tells the SQLite-net library not to

map this property onto the database table – we will handle this property

ourselves.

Your second model class is in the BoardWidget.cs file. This represents

each widget that is placed on the board and where it is positioned.

using SQLite;

namespace WidgetBoard.Models;

public class BoardWidget
{
 [PrimaryKey, AutoIncrement]
 public int Id { get; set; }
 public int BoardId { get; set; }
 public int Position { get; set; }
 public string WidgetType { get; set; } = string.Empty;
}

Chapter 10 Local Data

316

�Creating Your Tables

You can inform the SQLite-net connection to create a table for you.

This can be done by calling the CreateTable<T> method and passing

the appropriate model type. Note that CreateTable is idempotent, so

unless you change your model, calling CreateTable a second time will

have no impact. You can modify your SqliteBoardRepository to call the

CreateTable method in its constructor as follows (changes in bold):

public SqliteBoardRepository(IFileSystem fileSystem)
{
 �var dbPath = Path.Combine(fileSystem.AppDataDirectory,

"widgetboard_sqlite.db");
 connection = new SQLiteConnection(dbPath);
 connection.CreateTable<Board>();
 connection.CreateTable<BoardWidget>();
}

�Inserting into an SQLite Database

You can now add in the ability to insert a board into your database by

supplying the following implementation into the CreateBoard method:

public void CreateBoard(Board board)
{
 connection.Insert(board);
}

The same approach can be applied to the CreateBoardWidget method:

public void CreateBoardWidget(BoardWidget boardWidget)
{
 connection.Insert(boardWidget);
}

Chapter 10 Local Data

317

�Reading a Collection from an SQLite Database

You only need to return a list of the boards your user has created in the

application.

public IReadOnlyList<Board> ListBoards()
{
 return connection.Table<Board>()
 .ToList();
}

Perhaps you should consider sorting these boards alphabetically.

SQLite-net offers a rich set of functionality when querying data in the

database. You can make use of LINQ-based expressions, which gives you

the following (the addition in bold):

public IReadOnlyList<Board> ListBoards()
{
 return connection.Table<Board>()
 .OrderBy(b => b.Name)
 .ToList();
}

Note that sorting the list in this way will be more efficient than loading

the list into memory and then sorting the items.

�Reading a Single Entity from an SQLite Database

When reading a Board from the database, you also need to load any

BoardWidgets that relate to it. For this, you can write the following:

public Board? LoadBoard(int boardId)
{
 var board = connection.Find<Board>(boardId);

Chapter 10 Local Data

318

 if (board is null)
 {
 return null;
 }

 �var widgets = connection.Table<BoardWidget>().Where(w =>
w.BoardId == boardId).ToList();

 board.BoardWidgets = widgets;
 return board;
}

The first line calling Find allows you to find an entity with the supplied

primary key value. This retrieves the Board. Next, you need to retrieve the

collection of BoardWidgets. This is performed in a very similar manner

to loading your collection of Boards. Finally, you assign the widgets you

loaded into the board before returning it to the caller.

It is worth noting that the Sqlite-net-pcl package does not provide more

complex querying operations such as joins. If this is something that you

still require, it is possible to write the SQL directly and execute against

the connection. If you wish to join your Board and BoardWidget tables

together, you can achieve this as follows:

var board = connection.Query<Board>("SELECT B.* FROM Board B
JOIN BoardWidget BW ON BW.BoardId = B.BoardId WHERE B.BoardId =
?", boardId);

Note that the above query is purely aimed at showing how joins work;

it does not provide you with any particularly useful in the context of your

application.

Chapter 10 Local Data

319

�Deleting from an SQLite Database

While I haven’t focused on providing this functionality just yet, it is a very

common use case.

public void DeleteBoard(Board board)
{
 connection.Delete(board);
}

�Updating an Entity in an SQLite Database

While I haven’t focused on providing this functionality just yet, it is a very

common use case.

public void UpdateBoard(Board board)
{
 connection.Update(board);
}

This concludes the section on adding an SQLite-based database into

our .NET MAUI application. You or your team may decide that SQLite is

not the approach that you wish to take; therefore, the next section will

provide you with an alternative approach.

�LiteDB
LiteDB is a simple, fast, and lightweight embedded .NET document

database. LiteDB was inspired by the MongoDB database, and its API is

very similar to the official MongoDB .NET API.

Chapter 10 Local Data

320

�Installing LiteDB

In order to install and use LiteDB, you need to install the NuGet package

called LiteDB. Don’t worry; it is perfectly fine to install both the LiteDB

and SQLite packages side by side into your project. In fact, that is precisely

what you will do here.

You can do this by following these steps:

	 1.	 Right-click the WidgetBoard project.

	 2.	 Click Manage NuGet Packages.

	 3.	 In the Search field, enter LiteDB.

	 4.	 Select the LiteDB package and select Add Package.

	 5.	 A confirmation dialog will show. Review and accept

the license details if you are happy.

�Using LiteDB

The first step is to create your IBoardRepository implementation. Add a

new class file called LiteDBBoardRepository in your Data folder, and make

it implement your IBoardRepository interface.

using LiteDB;
using WidgetBoard.Models;

namespace WidgetBoard.Data;

public class LiteDBBoardRepository : IBoardRepository
{
 public void CreateBoard(Board board)
 {
 throw new NotImplementedException();
 }

Chapter 10 Local Data

321

 public void CreateBoardWidget(BoardWidget boardWidget)
 {
 throw new NotImplementedException();
 }
 public void DeleteBoard(Board board)
 {
 throw new NotImplementedException();
 }
 public IReadOnlyList<Board> ListBoards()
 {
 throw new NotImplementedException();
 }
 public Board? LoadBoard(int boardId)
 {
 throw new NotImplementedException();
 }
 public void UpdateBoard(Board board)
 {
 throw new NotImplementedException();
 }
}

You also need to register your implementation with the app

builder in MauiProgram.cs. You can add the following line. Just make

sure that you have removed or commented out the line to register the

SqliteBoardRepository implementation.

builder.Services.AddTransient<IBoardRepository,
LiteDBBoardRepository>();

Chapter 10 Local Data

322

�Connecting to a LiteDB Database

LiteDB stores all its data in a single file on disk, so your first task is to

specify where this file exists so that you can create and open the file for

users within your application. For this part, you will borrow a concept from

a little further ahead in this chapter (the “File System” section).

Edit your repository class to support opening a connection to your

database.

Add a field to hold the database access details.

private readonly LiteDatabase database;

Add a constructor to open the connection.

public LiteDBBoardRepository(IFileSystem fileSystem)
{
 �var dbPath = Path.Combine(fileSystem.AppDataDirectory,

"widgetboard_litedb.db");
 database = new LiteDatabase(dbPath);
}

The above should look very similar to the SQLite way of accessing the

database. Here you make use of the IFileSystem implementation you

registered in the previous section. Then you make use of that to determine

where to store your database file. Finally, you open a connection using the

path to your database file. Note that if the file does not exist, one will be

created for you.

�Mapping Your Models

First, you need to add a field to hold a collection of boards and one for the

collection of board widgets.

private readonly ILiteCollection<Board> boardCollection;
private readonly ILiteCollection<BoardWidget>
boardWidgetCollection;

Chapter 10 Local Data

323

Then you need to get access to that collection in order to allow you to

perform your operations against it.

boardCollection = database.GetCollection<Board>("Boards");
boardWidgetCollection
= database.GetCollection<BoardWidget>("BoardWidgets");

The final part of your mapping setup is to define indexing information

about your model. For this, you use the EnsureIndex method.

boardCollection.EnsureIndex(b => b.Id, true);

In LiteDB, any property that you wish to be unique or want to query

against needs to have a definition provided through the EnsureIndex

method. This should feel like a familiar concept to any relational

database developers that are used to creating keys or indexes on their

database tables.

�Creating Your Tables

You don’t actually need to do anything to create your tables here. The key

difference between LiteDB and other databases that you might use is that

the schema of the data is held with the data.

�Inserting into a LiteDB Database

You can now add in the ability to insert a board into your database by

supplying the following implementation into the CreateBoard method:

public void CreateBoard(Board board)
{
 boardCollection.Insert(board);
}

Chapter 10 Local Data

324

The same approach can be applied to the CreateBoardWidget method:

public void CreateBoardWidget(BoardWidget boardWidget)
{
 boardWidgetCollection.Insert(boardWidget);
}

�Reading a Collection from a LiteDB Database

You only need to return a list of the boards your user created in the

application.

public IReadOnlyList<Board> ListBoards()
{
 return boardCollection.Query()
 .ToList();
}

Perhaps you should consider sorting these boards alphabetically.

LiteDB offers a similar set of functionality that you looked at with SQLite-

net. LINQ-based expressions can be used to order your boards, which

gives you the following (the addition is in bold):

public IReadOnlyList<Board> ListBoards()
{
 return boardCollection.Query()
 .OrderBy(b => b.Name)
 .ToList();
}

You also need to add the following line to your constructor to make

sure querying is possible:

boardCollection.EnsureIndex(b => b.Name, false);

Chapter 10 Local Data

325

�Reading a Single Entity from a LiteDB Database

When reading a Board from the database, you also need to load any

BoardWidgets that relate to it. For this, you can write the following:

public Board? LoadBoard(int boardId)
{
 var board = boardCollection.FindById(boardId);

 if (board is null)
 {
 return null;
 }

 �var boardWidgets = boardWidgetCollection.Find(w =>
w.BoardId == boardId).ToList();

 board.BoardWidgets = boardWidgets;

 return board;
}

The first line calls the FindById method, which allows you to find an

entity with the supplied primary key value. This retrieves the Board. Next,

you need to retrieve the collection of BoardWidgets. This is performed in a

very similar manner to loading your collection of Boards. Finally, you assign

the widgets you loaded into the board before returning it to the caller.

�Deleting from a LiteDB Database

While I haven’t focused on providing this functionality, it is a very common

use case.

public void DeleteBoard(Board board)
{
 boardCollection.Delete(board.Id);
}

Chapter 10 Local Data

326

�Updating an Entity in a LiteDB Database

While I haven’t focused on providing this functionality, it is a very common

use case.

public void UpdateBoard(Board board)
{
 boardCollection.Update(board);
}

This concludes the section on adding a LiteDB-based database into

our .NET MAUI application.

�Database Summary
There is an abundance of options when it comes to choosing not only

which database but then also the Object Relational Mapping (ORM) layer

on top of it. The aim of this section is to give a taste of what some options

offer and to encourage you to decide which will benefit your application

and team most.

Both options I covered provide support for encryption; SQLite requires

that you install an additional package called sqlite-net-sqlcipher, and

LiteDB supports encryption out of the box.

I strongly encourage you to evaluate which database will provide you

with the best development experience and the users of your application

with the best user experience. Some databases perform better in different

scenarios.

Moving forward with this application, you will continue to use LiteDB.

Chapter 10 Local Data

327

�Application Settings (Preferences)
Quite often you will want to persist data about your application that you

really do not need a database for. I like to refer to these bits of data as

application settings. If you have previous experience with building .NET

applications, this would be similar to an app.config or appsettings.json

file. The .NET MAUI term is Preferences, though, and this is the API that

you will look at accessing.

An item in Preferences is stored as a key-value pair. The key is a string,

and it is recommended to keep the name short in length.

As with all of the other APIs provided by .NET MAUI, you will register

the Preferences implementation with the app builder in the MauiProgram.
cs file. You can add the following line into the CreateMauiApp method:

builder.Services.AddSingleton(Preferences.Default);

Now let’s proceed to looking at what types of data can be stored in

Preferences.

�What Can Be Stored in Preferences?
There is a limitation on the type of data that can be stored in Preferences.

The API provides the ability to store the following .NET types:

•	 Boolean

•	 Double

•	 Int32

•	 Single

•	 Int64

•	 String

•	 DateTime

Chapter 10 Local Data

328

Having the ability to provide a String value surely means you could

in theory store anything in there, right? While this is technically possible,

it is highly recommended that you only store small amounts of text.

Otherwise, the performance of storing and retrieval can be impacted in

your applications.

�Setting a Value in Preferences
You can store a value in Preferences through the use of the Set method.

You can provide a key, the value, and also an optional sharedName. The

preferences stored in your application are only visible to that application.

You can also create a shared preference that can be used by other

extensions or a watch application should you wish.

A perfect use case for your application is to store the ID of the last

accessed board and open it the next time the application loads. Let’s store

the ID initially. Inside your FixedBoardPageViewModel class, you can make

the following changes.

Add the preferences field.

private readonly IPreferences preferences;

Update the constructor to set the preferences field (changes in bold).

public FixedBoardPageViewModel(
 WidgetTemplateSelector widgetTemplateSelector,
 WidgetFactory widgetFactory,
 IBoardRepository boardRepository,
 IPreferences preferences)
{
 WidgetTemplateSelector = widgetTemplateSelector;
 this.preferences = preferences;
 Widgets = new ObservableCollection<IWidgetViewModel>();
}

Chapter 10 Local Data

329

Finally, record the ID of the board that was supplied when

navigating to the page. You can do this by adding the bold line to your

ApplyQueryAttributes method:

public void ApplyQueryAttributes(IDictionary<string,
object> query)
{
 var boardParameter = (Board)query["Board"];
 board = boardRepository.LoadBoard(boardParameter.Id);

 if (board is not null)
{
 preferences.Set("LastUsedBoardId", board.Id);
 BoardName = board.Name;
 NumberOfColumns = board.NumberOfColumns;
 NumberOfRows = board.NumberOfRows;
 }
}

This means that every time a user opens a board to view it, the ID will

be remembered in Preferences. When the application is opened again in

the future, it will use that ID to open the last viewed board.

A possible alternative way of achieving this type of functionality could

be to maintain a last opened column in the database and always find the

latest of that set.

�Getting a Value in Preferences
You can retrieve a value from Preferences using the Get method. You are

required to supply the key identifying the setting and a default value to be

returned if the key does not exist. You can optionally provide a sharedName,

much like with the Set method covered in the previous section.

Chapter 10 Local Data

330

You have already written the code to store your LastUsedBoardId in

Preferences, so let’s read it back when loading your boards up to display.

Open up your AppShellViewModel.cs file and make the following changes.

Add the following fields:

private readonly IPreferences preferences;
private readonly IDispatcher dispatcher;

Set the preferences field in the constructor (changes in bold).

public AppShellViewModel(
 IBoardRepository boardRepository,
 IPreferences preferences,
 IDispatcher dispatcher)
{
 this.boardRepository = boardRepository;
 this.preferences = preferences;
 this.dispatcher = dispatcher;
}

Update your LoadBoards method to support navigating to the last used

board (changes in bold).

public void LoadBoards()
{
 Boards.Clear();

 var boards = this.boardRepository.ListBoards();
 �var lastUsedBoardId = preferences.

Get("LastUsedBoardId", -1);
 Board? lastUsedBoard = null;
 foreach (var board in boards)
 {
 Boards.Add(board);
 if (lastUsedBoardId == board.Id)

Chapter 10 Local Data

331

 {
 lastUsedBoard = board;
 }
 }
 if (lastUsedBoard is not null)
 {
 dispatcher.Dispatch(() =>
 {
 BoardSelected(lastUsedBoard);
 });
 }
}

There are a few new concepts here, so let’s break them down into

understandable chunks.

First is the use of the preferences.Get method, as you learned about

before writing the above code. You supply the key name and the default

value to be returned if the key does not exist. You use -1 for the default

because it is not a valid ID for a database key.

The final new concept is the use of the IDispatcher implementation

provided by .NET MAUI. This allows you to trigger a deferred action and

make sure that it is dispatched onto the UI thread. Your method will be

called on the UI thread, but you want the OnAppearing logic to finish

before you attempt to navigate somewhere; by calling dispatcher.
Dispatch, you are queuing up an action to be performed once the UI

thread is no longer busy. .NET MAUI does handle a lot of dispatching for

you when you trigger updates in bindings, but there are times when you

need to make sure that you are updating things on the UI thread.

If you run your code now, you can create a new board and view it once

saved. If you then close and reopen the application, you will see that the

board you created is now shown for you. Providing an experience like

this can go a long way to an enjoyable user experience (UX) as they are

returning to where they were previously.

Chapter 10 Local Data

332

�Checking If a Key Exists in Preferences
There can be times when you are unable to supply a suitable default

value to the Get method in order to know whether a value has been set,

for example, using a Boolean. false is a valid value, and therefore, the

default value would not be able to distinguish whether it was set as false

or the default value of false. In this scenario, you can make use of the

ContainsKey method. So instead of writing

var lastUsedBoardId = preferences.Get("LastUsedBoardId", -1);

you could have first checked whether the key existed, like

if (preferences.ContainsKey("LastUsedBoardId"))
{
 // Perform your logic
}

�Removing a Preference
There may be times when you need to remove an option from the

Preferences store or even remove all options. If you want to remove your

LastUsedBoardId preference, you can write

Preferences.Remove("LastUsedBoardId");

If you want to remove all options, you can write

Preferences.Clear();

�Displaying Our Preferences
Now is the time to finally add some content into the SettingsPage

class. We can add in the ability to display the current value for the

LastUsedBoardId and allow the user to clear it. Let’s open the SettingsPage.

xaml file and add the following changes (in bold):

Chapter 10 Local Data

333

<?xml version="1.0" encoding="utf-8"?>
<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Pages.SettingsPage"
 x:DataType="viewModels:SettingsPageViewModel">
 <VerticalStackLayout Padding="20">
 <Label
 Text="Last used board"
 VerticalOptions="Center" />

 <HorizontalStackLayout>
 <Label
 Text="{Binding LastUsedBoard}"
 MinimumWidthRequest="200"
 VerticalOptions="Center" />
 <Button
 Text="Clear"
 Command="{Binding ClearLastUsedBoardCommand}"
 �SemanticProperties.Hint="Clears the last used

board value from settings. This means the
application won't automatically load a board
when opened." />

 </HorizontalStackLayout>
 </VerticalStackLayout>
</ContentPage>

The above makes use of all the good practices that we have covered

so far: adding in compiled bindings, including accessibility information

through SemanticProperties, etc. The key detail is that we have added a

Label which will display the name of the last used board and a Button to

allow for clearing this value.

Chapter 10 Local Data

334

Next we need to assign the SettingsPageViewModel to the

BindingContext of the page. Let’s open the SettingsPage.xaml.cs file and

do that (changes in bold).

using WidgetBoard.ViewModels;

namespace WidgetBoard.Pages;

public partial class SettingsPage : ContentPage
{
 public SettingsPage(SettingsPageViewModel viewModel)
 {
 InitializeComponent();
 BindingContext = viewModel;
 }
}

The final change is to modify the SettingsPageViewModel.cs file to

provide the properties and logic to assign values to those properties. The

resulting file should look as follows (with changes in bold):

using System.Windows.Input;
using WidgetBoard.Data;

namespace WidgetBoard.ViewModels;

public class SettingsPageViewModel : BaseViewModel
{
 public SettingsPageViewModel(
 IPreferences preferences,
 IBoardRepository boardRepository)
 {
 �var lastUsedBoardId = preferences.

Get("LastUsedBoardId", -1);

Chapter 10 Local Data

335

 if (lastUsedBoardId != -1)
 {
 �LastUsedBoard = boardRepository.

LoadBoard(lastUsedBoardId)?.Name ?? string.Empty;
 }

 ClearLastUsedBoardCommand = new Command(() =>
 {
 preferences.Remove("LastUsedBoardId");
 LastUsedBoard = string.Empty;
 });
 }

 private string lastUsedBoard = string.Empty;

 public string LastUsedBoard
 {
 get => lastUsedBoard;
 set => SetProperty(ref lastUsedBoard, value);
 }

 public ICommand ClearLastUsedBoardCommand { get; }
}

By now, most of these changes should start to feel familiar; we are

–– Adding a property (LastUsedBoard) that will notify the

UI of any changes

–– Adding a command that the UI can bind to in order to

execute an action in the view model

–– Getting the “LastUsedBoardId” value from

Preferences

–– Using that value to load a specific board and assign its

name to the LastUsedBoard property

Chapter 10 Local Data

336

This concludes how you can store, load, and remove application

settings. Now let’s proceed to learning about how to secure application

settings.

�Secure Storage
When building an application, there will quite often be an occasion where

you need to store an API token or some form of data that needs to be held

securely. .NET MAUI provides another API that makes sure that the values

you supply are held securely on each of the platforms’ secure storage

locations.

As always with a new API provided by .NET MAUI, you must register it

with the MauiAppBuilder in your MauiProgram.cs file, so let’s open up that

file and add the following line into the CreateMauiApp method:

builder.Services.AddSingleton(SecureStorage.Default);

This will allow you to declare a dependency on ISecureStorage in

your class constructors and have it provided for you. Next you can add in

the functionality to the SettingsPage just as you did for the Preferences

implementation.

You don’t currently have a need to use a secure value just yet. It will

follow in the next chapter, but given that we are covering the storage of

local data, we can make the changes to the application ready for using it

in Chapter 11. Let’s open up the SettingsPage.xaml file and add in the

following section below the existing </HorizontalStackLayout> element:

<Label
 Text="Open Weather API token"
 VerticalOptions="Center" />

<HorizontalStackLayout>
 <Entry

Chapter 10 Local Data

337

 Text="{Binding OpenWeatherApiToken}"
 MinimumWidthRequest="200"
 IsPassword="True" />
 <Button
 Text="Save"
 Command="{Binding SaveApiTokenCommand}"
 �SemanticProperties.Hint="Saves the currently entered

Open Weather API token into secure storage." />
</HorizontalStackLayout>

As before, most of this should feel familiar; one key detail to highlight

is the use of the IsPassword property on the Entry element – this allows

you to add an entry field that will mask the entered characters with the *

character and therefore protect the value from prying eyes. Now that we

have added in the UI, let’s open the SettingsPageViewModel.cs file and

actually interact with the ISecureStorage API.

Add the following fields and properties to the class:

private string openWeatherApiToken = string.Empty;

public string OpenWeatherApiToken
{
 get => openWeatherApiToken;
 set => SetProperty(ref openWeatherApiToken, value);
}

public ICommand SaveApiTokenCommand { get; }

And then you can modify the constructor to look as follows (with

changes in bold):

public SettingsPageViewModel(
 IPreferences preferences,
 IBoardRepository boardRepository,

Chapter 10 Local Data

338

 ISecureStorage secureStorage)
{
 �var lastUsedBoardId = preferences.

Get("LastUsedBoardId", -1);
 if (lastUsedBoardId != -1)
 {
 �LastUsedBoard = boardRepository.

LoadBoard(lastUsedBoardId)?.Name ?? string.Empty;
 }

 ClearLastUsedBoardCommand = new Command(() =>
 {
 preferences.Remove("LastUsedBoardId");
 LastUsedBoard = string.Empty;
 });

 SaveApiTokenCommand = new Command(async () =>
 {
 �await secureStorage.SetAsync("OpenWeatherApiToken",

OpenWeatherApiToken);
 });

 �OpenWeatherApiToken = secureStorage.GetAsync(
"OpenWeatherApiToken").GetAwaiter().GetResult() ??
string.Empty;

}

To summarize, you are providing the following.

�Storing a Value Securely
The application will save a value in secure storage with the key of

OpenWeatherApiToken and the value entered by the user when the user clicks

the Save button. This is covered by the following line from the above changes:

Chapter 10 Local Data

339

await secureStorage.SetAsync("OpenWeatherApiToken",
OpenWeatherApiToken);

�Reading a Secure Value
The application will also load the currently stored value against the key of

OpenWeatherApiToken and display the value inside the entry field.

This is covered by the following line from the previous changes:

OpenWeatherApiToken = secureStorage.GetAsync(
"OpenWeatherApiToken").GetAwaiter().GetResult() ??
string.Empty;

�Removing a Secure Value
As with Preferences, you can remove all secure values.

To remove a specific value, remove the key:

bool success = SecureStorage.Default.
Remove("OpenWeatherApiToken ");

To remove all values, use the RemoveAll method:

SecureStorage.Default.RemoveAll();

�Platform Specifics
As mentioned, the SecureStorage API makes use of each of the platform-

specific APIs to handle the actual storage of the data you pass in. It is worth

noting that the implementations for each individual platform are different

and may change in the operating systems but SecureStorage will leverage

whatever is in the operating system and therefore will always be the most

secure option. This section explains how.

Chapter 10 Local Data

340

�Android

The data you pass in is encrypted with the Android

EncryptedSharedPreferences class, from the Android Security library,

which automatically encrypts keys and values using a two-scheme

approach:

	 1.	 Keys are deterministically encrypted so that the key

can be encrypted and properly looked up.

	 2.	 Values are nondeterministically encrypted using

AES-256 GCM.

The Android Security library provides an implementation of the

security best practices related to reading and writing data at rest, as well as

key creation and verification.

Since Google introduced Android 6.0 (API level 23), the operating

system offers the ability to back up the user’s data. This includes the

Preferences and also the SecureStorage that .NET MAUI offers. It is

entirely possible, and in fact, I recommend that you disable this backup

functionality when using SecureStorage.

In order to disable the auto backup feature, you need to set the

android:allowBackup to false in the AndroidManifest.xml file under the

Platforms/Android folder. The resulting change should look something

like the following:

<manifest ... >
 ...
 <application android:allowBackup="false" ... >
 ...
 </application>
</manifest>

Chapter 10 Local Data

341

�iOS and macOS

Data passed into SecureStorage on iOS and macOS is encrypted through

the Keychain API. To quote Apple:

The keychain is the best place to store small secrets, like pass-
words and cryptographic keys. You use the functions of the
keychain services API to add, retrieve, delete, or modify
keychain items.

For further reading, refer to the Apple documentation at https://
developer.apple.com/documentation/security/certificate_key_and_
trust_services/keys/storing_keys_in_the_keychain.

In some cases, keychain data is synchronized with iCloud, and

uninstalling the application may not remove the secure values from user

devices. I have certainly observed this in some applications I have built, so

it is best to plan around this possibility.

�Windows

SecureStorage on Windows uses the DataProtectionProvider class to

encrypt values securely. The .NET MAUI implementation allows for the

data to be protected against the local user or computer account.

For further reading, refer to the Microsoft documentation at https://
docs.microsoft.com/uwp/api/windows.security.cryptography.
dataprotection.dataprotectionprovider?view=winrt-22621.

�Viewing the Result
Now when running your application, you will see that not only does the

last board that you create get loaded back up but it also shows the widgets

you previously added. Figure 10-2 shows an example of the results.

Chapter 10 Local Data

https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_keychain
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_keychain
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_keychain
https://docs.microsoft.com/uwp/api/windows.security.cryptography.dataprotection.dataprotectionprovider?view=winrt-22621
https://docs.microsoft.com/uwp/api/windows.security.cryptography.dataprotection.dataprotectionprovider?view=winrt-22621
https://docs.microsoft.com/uwp/api/windows.security.cryptography.dataprotection.dataprotectionprovider?view=winrt-22621

342

Figure 10-2.  The application loads back up and shows the previously
added widgets

Then selecting the Settings tab will present the user with the new

settings-based page you just added. Figure 10-3 shows an example of the

settings tab page.

Chapter 10 Local Data

343

Figure 10-3.  The application showing the settings page to the user

�Summary
In this chapter, you have

•	 Learned about the different types of local data

•	 Discovered what .NET MAUI offers in terms of local file

storage locations and when to use each one

•	 Gained an understanding of database technologies and

applied two different options

•	 Modified your application to save and load the boards

your users create

Chapter 10 Local Data

344

•	 Gained an understanding of the options for storing

small bits of data or Preferences

•	 Added the ability to record the last opened board

•	 Gained an understanding of the options for storing

small bits of data securely or SecureStorage

In the next chapter, you will

•	 Learn about remote data

•	 Learn how you can interact with it

•	 Cover the common considerations

•	 Look at a concrete example with the Open Weather API

•	 Build your own implementation to consume the Open

Weather API

•	 Cover how to consume the data returned

•	 Talk through scenarios where things can go wrong

•	 Provide implementations to handle those scenarios

•	 Look at how you can reduce the complexity of your

implementation with Refit

•	 Add in your Weather Widget

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch10.

Chapter 10 Local Data

https://github.com/Apress/Introducing-MAUI/tree/main/ch10
https://github.com/Apress/Introducing-MAUI/tree/main/ch10

345

�Extra Assignment
You have provided the ability for users to add widgets to their boards

and automatically save them so when they next load the board, it will

be remembered for them. I would like to see if you can add the ability to

remove the widgets from the board and the database.

�Source Code
I would love for you to have an attempt at this extra assignment, but I have

also provided the source code. The source code for this extra assignment

can be found on the GitHub repository at https://github.com/Apress/
Introducing-.NET-MAUI-2nd-ed/tree/main/ch10-extra.

Chapter 10 Local Data

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch10-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch10-extra

347© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_11

CHAPTER 11

Remote Data

�Abstract
In this chapter, you will be exploring the topic of remote data, learning what

exactly it is, types of it, how to interact with it, and what to consider when

doing so. You will then build upon this learning by building a new widget,

the Weather Widget, to display the current weather. This will be done by

interacting directly with the Open Weather API. You will get exposure

to handling HTTP requests and responses with an API, how to handle

the response being in a JSON format, and the varying levels of flexibility

when mapping to the JSON data. You will finish off by simplifying the

implementation with a fantastic NuGet package that generates source code

for you, simply from an interface you define to represent the web service.

�What Is Remote Data?
Remote data is any data that is sourced from outside of your application;

typically it isn’t even on the device where the application is installed and

running. This can range from querying a web API in order to obtain data,

utilizing a cloud-based database provider, images hosted online, streaming

video or audio data, and more.

https://doi.org/10.1007/979-8-8688-1189-0_11#DOI

348

The vast majority of applications will interact with some form of

remote endpoint in order to pull data. In this world of constantly changing

data, this becomes an essential part of practically any application.

�Considerations When Handling Remote Data
There can be quite a few concepts to consider when interacting with

remote data. You will be explicitly addressing these as you build your new

widget, but I want to draw your attention to them before you start.

�Loading Times

One of the worst experiences for a user is to tap on a button or open a

new page/application and just see the application lock up while it is

loading data. The user will think that the application has crashed, and

in fact, platforms like Android and Windows will likely indicate that the

application has crashed/locked up if the load takes too long. Thankfully

.NET offers you the async and await keywords. They are not essential, but

they really do make your life easier. There could be an entire chapter or

even book on this topic; however, my good friend Brandon Minnick has

already covered a lot of this in his AsyncAwaitBestPractices repository

on GitHub. We will be covering the basics in order to build a responsive

application. I thoroughly recommend you do if you want to dig deeper

(https://github.com/brminnick/AsyncAwaitBestPractices).

A common use case is to display a visual that makes it clear to the

user that the application is busy loading. This can be with a simple

ActivityIndicator, which loads the platform-specific spinner/loading

icon users should feel familiar with, or you can make use of the animation

features I covered in Chapter 9 to show something more involved. With

this loading display, you then initiate your web service call. If you get a

response, you display the result of that response in your application (e.g.,

items in a shopping list or, in your scenario, the user’s current weather).

Chapter 11 Remote Data

https://github.com/brminnick/AsyncAwaitBestPractices

349

�Failures

During the building of a recent application, some of the most valuable

testing a friend provided for me was to install the application and then ride

the London Underground and observe just how flaky a mobile phone’s

data connection really can be.

There are two key questions to consider when dealing with network

connectivity issues:

	 1.	 What does the user need to know?

	 2.	 How does the application need to recover?

Don’t worry, I will be covering examples of how to answer these

questions as we build our weather widget.

�Security

As a developer of applications, it is essential that you maintain the trust

that your users put in you with regard to keeping their data safe. With

this in mind, you should always choose HTTPS over HTTP. In fact, most

platforms won’t allow HTTP traffic by default to avoid it accidentally being

used. There are ways to disable the prevention of HTTP traffic; however, I

strongly advise against it, so I won’t cover how to do so in this book.

I strongly recommend that as you build your applications, you consider

security as a top priority. The Open Web Application Security Project

(OWASP) is a nonprofit foundation that works to improve the security of

software, and it provides some really great resources and guidance on what

you should consider when building websites and mobile applications. As a

good starting point, look at their Mobile Application Security Testing Guide

repository on GitHub at https://github.com/OWASP/owasp-mastg/.

Quite often APIs will require levels of authentication that complicate the

flow to pulling data from them. This typically happens when your application

needs to consume data specific to a user and not just the API itself. I won’t

Chapter 11 Remote Data

https://github.com/OWASP/owasp-mastg/

350

be covering this scenario in this book, but I recommend reading up on

OAuth 2.0 with a good initial resource at www.oauth.com/oauth2-servers/
mobile-and-native-apps/. Additionally, specific APIs such as the GitHub

API will likely provide good documentation on how to use their specific

authentication mechanism. So with this in mind, I recommend referring to

the documentation for the API that you wish to integrate with.

�Web Services
Web services act as a mechanism to query or obtain data from a remote

server. They typically offer many advantages to developers building them

because they provide the ability to charge based on usage, protect the

developer’s intellectual property, and other reasons.

�The Open Weather API
You will be calling the Open Weather API and specifically version 2.5 of

the One Call API. The API is free to use with some usage limits. You can

call it up to 60 times per minute and 1,000,000 calls per month, which will

certainly be fine for this scenario.

For the initial work, you will be using a fixed latitude and longitude of

20.7984 and -156.3319, respectively, which, if you look it up, represents

Maui, Hawaii. You will enable the application to use the device’s current

location information in the next chapter.

�Creating an Open Weather Account

You will be required to create an account. To do so, navigate to the website

at https://home.openweathermap.org/users/sign_up and create the

account. Note that you do not need to enter any billing details. You can

use it entirely for free. If you breach the call limits, the API will simply fail

instead of running into accidental charges.

Chapter 11 Remote Data

http://www.oauth.com/oauth2-servers/mobile-and-native-apps/
http://www.oauth.com/oauth2-servers/mobile-and-native-apps/
https://home.openweathermap.org/users/sign_up

351

�Creating an Open Weather API Key

Next, you need to create an API key, which can be done on the following

page at https://home.openweathermap.org/api_keys. Keep a copy of this

API key ready for when you eventually use it later in this chapter. Don’t

worry too much for now as you can return to the above web page and

access the key.

�Examining the Data

Before you dive into writing some code, you should take a look at the API

and the data that it returns. In fact, the API offers a lot more detail than

you really need. You can consume the details in case you want to use them

in the future; however, this does bring in some possible drawbacks. It

increases the complexity of reading through the data if you need to debug

things, and it also increases the amount of data that needs to be retrieved

by your application. In the mobile world, this can be expensive!

Given the above, you can make the following web service call which

includes following details:

•	 Calls version 2.5 of the One Call API

•	 Supplies a latitude of 20.7984

•	 Supplies a longitude of -156.3319

•	 Supplies units of metric, meaning you will receive

degrees Celsius (apologies if you still work in

imperial units)

•	 Supplies the API key you created in the previous section

The full URL that you need to call looks as follows:

https://api.openweathermap.org/data/2.5/weather?lat=20.7984&
lon=-156.3319&units=metric&appid=APIKEY

Chapter 11 Remote Data

https://home.openweathermap.org/api_keys
https://api.openweathermap.org/data/2.5/weather?lat=20.7984&lon=-156.3319&units=metric&appid=APIKEY
https://api.openweathermap.org/data/2.5/weather?lat=20.7984&lon=-156.3319&units=metric&appid=APIKEY

352

You can open this in any web browser to view the following response back;

just make sure to replace the APIKEY text with your own API key. You can see

the key details that you will need for your application highlighted in bold.

{
 "coord": {
 "lon":-156.3319,
 "lat":20.7984
 },
 "weather":[
 {
 "id":802,
 "main":"Clouds",
 "description":"scattered clouds",
 "icon":"03d"
 }
],
 "base":"stations",
 "main": {
 "temp":22.73,
 "feels_like":22.96,
 "temp_min":21.23,
 "temp_max":24.1,
 "pressure":1017,
 "humidity":73,
 "sea_level":1017,
 "grnd_level":945
 },
 "visibility":10000,
 "wind": {
 "speed":3.09,
 "deg":300
 },

Chapter 11 Remote Data

353

 "clouds": {
 "all":40
 },
 "dt":1729711746,
 "sys": {
 "type":2,
 "id":18862,
 "country":"US",
 "sunrise":1729700629,
 "sunset":1729742100
 },
 "timezone":-36000,
 "id":5852697,
 "name":"Pukalani",
 "cod":200
}

�Using System.Text.Json

In order to consume and deserialize the contents of the JSON returned to

you, you need to use one of the following two options:

•	 Newtonsoft.Json (requires a NuGet package)

•	 System.Text.Json

Newtonsoft has been around for many years and is a go-to option for

many developers. System.Text.Json has become its successor and is my

recommendation for this scenario, especially as it is backed by Microsoft

and James Newton-King, the author of Newtonsoft, who works for

Microsoft.

Let’s go ahead and use System.Text.Json as it is the recommended way

to proceed and is included with .NET MAUI out of the box.

Chapter 11 Remote Data

354

Now that you have seen what the data looks like, you can start to build

the model classes that will allow you to deserialize the response coming

back from the API.

�Creating Your Models

I highlighted that you really don’t need all of the information that is

returned from the API. Thankfully you only need to build your model to

cover the detail that you require and allow the rest to be ignored during the

deserialization process.

Let’s create the model classes you require. You do this in the reverse

order that they appear in the JSON due to the fact that the outer elements

need to refer to the inner elements.

First, add a new folder to keep everything organized and call it

Communications.

Now, add a new class file and call it Weather.cs.

namespace WidgetBoard.Communications;

public class Weather
{
 public string Main { get; set; } = string.Empty;
 public string Icon { get; set; } = string.Empty;
 �public string IconUrl => $"https://openweathermap.org/img/

wn/{Icon}@2x.png";
}

Your Weather class maps to the weather element in the JSON returned

from the API. You can see that you are mapping to the main and icon

elements and you have added a calculated property that returns a URL

pointing to the icon provided by the Open Weather API. The last property

you are mapping, IconUrl, is yet another great example of remote data.

The API provides you with an icon that can be rendered inside your

Chapter 11 Remote Data

355

application representing the current weather of the location. Based on

the example in your original JSON, you see the icon value of 03d. This

represents clouds and is making me feel a little happy knowing that a

typically sunny Maui is cloudy when it is sunny here in the UK when it

would typically be cloudy.

You will notice that the casing of your property names does not

match the element names in the JSON. This will actually result in the

deserialization process failing to map as you require. When you get to the

deserialization part, you will see how to handle this scenario.

Your next model class to add should be called Main, and similarly to

the Weather class, it will map to the element that matches its name: main.

Your Main class file should have the following contents:

using System.Text.Json.Serialization;

namespace WidgetBoard.Communications;

public class Main
{
 [JsonPropertyName("temp")]
 public double Temperature { get; set; }
}

This class will currently only map to the current Temperature, there are

many other values that you could map to if you wish to show more detail

in your widget. With the Temperature property mapping, you can see how

it is possible to map from a property in your model to an element in JSON

that has a different name. This functionality is extremely valuable when

building your own models because it allows you to name the properties to

provide better context. I personally prefer to avoid abbreviations and stick

with explicit names to make the intentions of the code clear.

Chapter 11 Remote Data

356

Your final model class to add should be called Forecast.cs and will

have the following contents:

namespace WidgetBoard.Communications;

public class Forecast
{
 public Main? Main { get; set; }
 public Weather[] Weather { get; set; } = [];
}

This class maps to the top-level element in the returned JSON. You are

mapping to the Timezone element, the Current, which will contain your

previously mapped values, and an array of Weather elements.

Now that you have created the model classes that can be mapped to

the JSON returned from the Open Weather API, you can proceed to calling

the API in order to retrieve that JSON.

�Connecting to the Open Weather API

Before you start to build the implementation for accessing the API, you

are going to create an interface to define what it should do. This has the

added benefit that when you wish to unit test any class that depends on

the IWeatherForecastService, you can supply a mock implementation

rather than requiring that the unit tests will access the real API. I will cover

why that is a bad idea in Chapter 14, but the simple answer here is that you

have a limited number of calls you are allowed to make for free and you

don’t want unit tests eating that allowance up.

namespace WidgetBoard.Communications;

public interface IWeatherForecastService
{
 �Task<Forecast?> GetForecast(double latitude, double

longitude, string apiKey);
}

Chapter 11 Remote Data

357

A common naming approach to classes that interact with APIs is

to add the suffix Service to show that it provides a service to the user.

Therefore, let’s create your service by adding a new class file and calling it

WeatherForecastService.cs. Add the following contents:

using System.Text.Json;

namespace WidgetBoard.Communications;

public class WeatherForecastService : IWeatherForecastService
{
 private readonly HttpClient httpClient;
 �private const string ServerUrl = "https://api.

openweathermap.org/data/2.5/weather?";

 public WeatherForecastService(HttpClient httpClient)
 {
 this.httpClient = httpClient;
 }

 �public async Task<Forecast?> GetForecast(double latitude,
double longitude, string apiKey)

 {
 var response = await httpClient
 �.GetAsync($"{ServerUrl}lat={latitude}&lon=

{longitude}&units=metric&appid={apiKey}")
 .ConfigureAwait(false);

 response.EnsureSuccessStatusCode();

 var stringContent = await response.Content
 .ReadAsStringAsync()
 .ConfigureAwait(false);

Chapter 11 Remote Data

358

 var options = new JsonSerializerOptions
 {
 PropertyNameCaseInsensitive = true
 };
 �return JsonSerializer.Deserialize<Forecast>

(stringContent, options);
 }
}

You added a fair amount into this class file, so let’s walk through it step

by step and cover what it does.

First is the HttpClient backing field, which is set within the

constructor and will be supplied by the dependency injection layer. You

also have a constant representing the URL of the API.

Next is the main piece of functionality in the GetForecast method. The

first line in this method handles connecting to the Open Weather API and

passing your latitude, longitude, and API key values. You also make sure

to set ConfigureAwait(false) because you do not need to be called back

on the initial calling thread. This helps to boost performance a little as it

avoids having to wait until the calling thread becomes free.

var response = await httpClient.GetAsync($"{ServerUrl}lat=
{latitude}&lon={longitude}&units=metric&appid={apiKey}")
 .ConfigureAwait(false);

Then you make sure that the request was handled successfully

by calling

response.EnsureSuccessStatusCode();

Note that the above will throw an exception if the status code received

was not a 200 (success ok).

Chapter 11 Remote Data

359

Then you extract the string content from the response.

var stringContent = await response.Content
 .ReadAsStringAsync()
 .ConfigureAwait(false);

Finally, you make use of the System.Text.Json library in order to

deserialize the string content into the model classes that you created.

var options = new JsonSerializerOptions
{
 PropertyNameCaseInsensitive = true
};
return JsonSerializer.Deserialize<Forecast>(stringContent,
options);

I mentioned earlier that you had to explicitly opt-in to matching

your property names to the JSON elements case-insensitively.

You can see from the above code that you can do this through

the use of the JsonSerializerOptions class and specifically the

PropertyNameCaseInsensitive property.

Now that you have created the service, you should add your weather

widget and make use of the service.

�Creating the WeatherWidgetView

In order to create your widget, you need to add a new view. Add a

new .NET MAUI ContentView (XAML) into your Views folder and

call it WeatherWidgetView. This results in two files being created:

WeatherWidgetView.xaml and WeatherWidgetView.xaml.cs. You need to

update both files.

WeatherWidgetView.xaml
<?xml version="1.0" encoding="utf-8" ?>
<ContentView

Chapter 11 Remote Data

360

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewModels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Views.WeatherWidgetView"
 x:DataType="viewModels:WeatherWidgetViewModel">
 <VerticalStackLayout>
 <Label
 Text="Today"
 FontSize="20"
 VerticalOptions="Center"
 HorizontalOptions="Start"
 TextTransform="Uppercase" />
 <Label
 VerticalOptions="Center"
 HorizontalOptions="Center">
 <Label.FormattedText>
 <FormattedString>
 <Span
 �Text="{Binding Temperature,

StringFormat='{0:F1}'}"
 FontSize="60"/>

 </FormattedString>
 </Label.FormattedText>
 </Label>
 <Label
 Text="{Binding Weather}"
 FontSize="20"
 VerticalOptions="Center"
 HorizontalOptions="Center" />

Chapter 11 Remote Data

361

 <Image
 Source="{Binding IconUrl}"
 WidthRequest="100"
 HeightRequest="100"/>
 </VerticalStackLayout>
</ContentView>

Some of the above XAML should feel familiar based on the previous

code you have written. Some bits are new, so let’s cover them.

Label.FormattedText enables you to define text of varying formats

inside a single Label control. This can be helpful especially when parts of

the text change dynamically in length and therefore result in the contents

moving around. In your example, you are adding a Span with a text binding

to your Temperature property in the view model and a second Span with

the degrees Celsius symbol.

The second new concept is the use of Image. The binding on the Source

property looks relatively straightforward; however, it is worth noting that

.NET MAUI works some magic for you here. You are binding a string to the

property. Under the hood, .NET MAUI converts the string into something

that can resemble an image source. In fact, the underlying type is called

ImageSource. Further to this, it will inspect your string, and if it contains a

valid URL (e.g., starts with https://), then it will aim to load it as a remote

image rather than looking in the application’s set of compiled resources. .NET

MAUI will also potentially handle caching of images for you to help reduce

the amount of requests sent in order to load images from a remote source. In

order to make use of this functionality, you need to provide a UriImageSource

property on your view model rather than the string property.

The process of converting from one type to another is referred to as

TypeConverters and can be fairly common in .NET MAUI. I won’t go into

detail on how they work, so please go to the Microsoft documentation site

at https://learn.microsoft.com/dotnet/api/system.componentmodel.
typeconverter.

Chapter 11 Remote Data

https://learn.microsoft.com/dotnet/api/system.componentmodel.typeconverter
https://learn.microsoft.com/dotnet/api/system.componentmodel.typeconverter

362

WeatherWidgetView.xaml.cs
You also need to make the following adjustments to the

WeatherWidgetView.xaml.cs file. This part is required because you

haven’t created a common base class for the widget views. At times there

can be good reasons to create them; however, because you want to keep

the visual tree as simple as possible, there isn’t a common visual base

class to use.

using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class WeatherWidgetView : ContentView,
IWidgetView
{
 public WeatherWidgetView()
 {
 InitializeComponent();
 }
 public IWidgetViewModel WidgetViewModel
 {
 get => (IWidgetViewModel)BindingContext;
 set => BindingContext = value;
 }
}

Now that you have created your widget view, you should create the

view model that will be paired with it.

�Creating the WeatherWidgetViewModel

The view model that you need to create in order to represent the weather-

related data that can be bound to the UI requires some work that you

are familiar with and some that you are not as familiar with. Let’s

Chapter 11 Remote Data

363

proceed to adding the familiar bits and then walk through the newer

concepts. First, add a new class file in the ViewModels folder and call it

WeatherWidgetViewModel.cs. The initial contents should be modified to

look as follows:

using WidgetBoard.Communications;

namespace WidgetBoard.ViewModels;

public class WeatherWidgetViewModel : BaseViewModel,
IWidgetViewModel
{
 public const string DisplayName = "Weather";
 public int Position { get; set; }
 public string Type => DisplayName;
}

The above should look familiar as it is very similar to the

ClockWidgetViewModel you created earlier on in the book. Now you need

to add in the weather-specific bits.

First, add a dependency on the IWeatherForecastService you created

a short while ago and also the ISecureStorage implementation that we

covered in the previous chapter.

private readonly IWeatherForecastService weatherForecastService;
private readonly ISecureStorage secureStorage;

public WeatherWidgetViewModel(IWeatherForecastService
weatherForecastService, ISecureStorage secureStorage)
{
 this.weatherForecastService = weatherForecastService;
 this.secureStorage = secureStorage;
 Task.Run(async () => await LoadWeatherForecast());
}

Chapter 11 Remote Data

364

private async Task LoadWeatherForecast()
{
 �var apiKey = await this.secureStorage.GetAsync("OpenWeather

ApiToken");

 if (apiKey is null)
 {
 return;
 }

 �var forecast = await weatherForecastService.
GetForecast(20.798363, -156.331924, apiKey);

 if (forecast?.Main is null)
 {
 return;
 }

 Temperature = forecast.Main.Temperature;
 Weather = forecast.Weather.First().Main;
 IconUrl = forecast.Weather.First().IconUrl;
}

Inside of your constructor, you keep a copy of the service and you also

start a background task to fetch the forecast information. Quite often you

wouldn’t start something like this from within a constructor; however,

given that you know your view model will only be created when it is being

added to the UI, this is perfectly acceptable.

Finally, you need to add the properties that your view wants to bind to.

private string iconUrl = string.Empty;
private double temperature;
private string weather = string.Empty;

Chapter 11 Remote Data

365

public string IconUrl
{
 get => iconUrl;
 set => SetProperty(ref iconUrl, value);
}
public double Temperature
{
 get => temperature;
 set => SetProperty(ref temperature, value);
}
public string Weather
{
 get => weather;
 set => SetProperty(ref weather, value);
}

That’s all you need in the view model for now. You can now register the

widget and get it ready for your first test run.

�Registering Your Widget

You first need to make use of a NuGet package in order to follow some

recommended practices for the registration and usage of the HttpClient

class. Go ahead and add the Microsoft.Extensions.Http NuGet package and

then take a look at how to use it.

•	 Right-click the WidgetBoard solution.

•	 Select Manage NuGet Packages.

•	 Search for Microsoft.Extensions.Http.

•	 Select the correct package.

•	 Click Add Package.

Chapter 11 Remote Data

366

Inside your MauiProgram.cs file, you need to add the following lines

into the CreateMauiApp method:

builder.Services.AddHttpClient<WeatherForecastService>();
builder.Services.AddSingleton<IWeatherForecastService,
WeatherForecastService>();
WidgetFactory.RegisterWidget<WeatherWidgetView, WeatherWidgetVi
ewModel>(WeatherWidgetViewModel.DisplayName);
builder.Services.AddTransient<WeatherWidgetView>();
builder.Services.AddTransient<WeatherWidgetViewModel>();

The above code registers your widget’s view and view models with the

dependency injection layer and also registers it with your WidgetFactory,

meaning it can be created from your add widget overlay.

�Testing Your Widget

If you run your application, you will first need to navigate to the Settings

tab and enter your Open Weather API key. You can see the API key

obfuscated in Figure 11-1.

Chapter 11 Remote Data

367

Figure 11-1.  Application running and showing an API key entered

Then you can open a board and add a weather widget; you can see the

result in Figure 11-2.

Chapter 11 Remote Data

368

Figure 11-2.  Application running and showing your weather widget
rendering correctly

This works fine provided you have a good network connection. The

moment you have a slow connection or even no connection, you will

notice that things don’t load quite as expected. In fact, you will likely

observe a crash. You knew this could happen based on your earlier

investigation into the things you need to consider when handling remote

data. Let’s now apply some techniques to handle these scenarios.

Chapter 11 Remote Data

369

�Adding Some State
The first thing you want to do is to consider the different possible states

that your process can be in. There are three key scenarios that you need to

handle and provide visual feedback to your users on:

	 1.	 The widget is loading the data.

	 2.	 The widget has the data.

	 3.	 The widget has encountered an issue loading

the data.

Let’s handle these three scenarios.

First, create an enum that will represent the above scenarios. You can

add this to the root of the project.

namespace WidgetBoard;

public enum State
{
 None = 0,
 Loading = 1,
 Loaded = 2,
 Error = 3
}

You also want to modify your loading code in the view model to make

use of this new State, with the changes in bold.

private async Task LoadWeatherForecast()
{
 �var apiKey = await this.secureStorage.GetAsync("OpenWeather

ApiToken");

Chapter 11 Remote Data

370

 if (apiKey is null)
 {
 return;
 }

 try
 {
 State = State.Loading;

 �var forecast = await weatherForecastService.
GetForecast(20.798363, -156.331924, apiKey);

 if (forecast?.Main is null)
 {
 State = State.Error;
 return;
 }

 Temperature = forecast.Main.Temperature;
 Weather = forecast.Weather.First().Main;
 IconUrl = forecast.Weather.First().IconUrl;

 State = State.Loaded;
 }
 catch (Exception)
 {
 State = State.Error;
 }
}

The example above hasn’t added any extra logging, but I would

strongly advise that inside the catch statement, you log errors out so that

you can investigate the reason for the error.

Chapter 11 Remote Data

371

And you also need to add the State property and backing field.

private State state;
public State State
{
 get => state;
 set => SetProperty(ref state, value);
}

�Converting the State to UI

This section may well deserve a more prominent setting; however, to allow

the content to flow through this book, I opted to only expose parts based

on the context of the topics you are learning as you build your application.

Quite often in .NET MAUI, there are scenarios where you wish to bind a

piece of data to the UI but that data type does not match the desired type in

the UI. To avoid having to add additional properties and potentially adding

view-related information into your view models, you can make use of a

concept called converters. A converter enables you to define how a specific

data type can be converted from its type to another type. I always find the

best way to cover something like this is to see it in action, so let’s create a

converter to convert from your new State enum above into a bool value

ready for binding to the IsVisible property in your view.

Add a new folder and call it Converters and then add a new class

file and call it IsEqualToStateConverter.cs and then you can add the

following contents:

using System.Globalization;

namespace WidgetBoard.Converters;

public class IsEqualToStateConverter : IValueConverter
{
 public State State { get; set; }

Chapter 11 Remote Data

372

 �public object? Convert(object? value, Type targetType,
object? parameter, CultureInfo culture)

 {
 if (value is State state)
 {
 return state == State;
 }
 return value;
 }

 �public object ConvertBack(object? value, Type targetType,
object? parameter, CultureInfo culture)

 {
 throw new NotImplementedException();
 }
}

The IValueConverter interface allows you to define how a value

passed in can be converted. Implementations of this interface are for use

within a binding using the Converter property. Let’s proceed to learn how

a converter can be used in a view.

�Displaying the Loading State

It is worth noting that at times data can be loaded very quickly and the act

of showing a spinner can provide a negative experience if it flashes very

quickly. Of course, it is impossible to know which calls will take longer

than others as there are so many factors which can affect the network. At

times like this, I like to make sure that there is always a minimum amount

of time that you display the spinner so that there isn’t this weird flash to

the user. Open the WeatherWidgetView.xaml file and make the following

changes in bold:

Chapter 11 Remote Data

373

<?xml version="1.0" encoding="utf-8" ?>
<ContentView
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"
 xmlns:converters="clr-namespace:WidgetBoard.Converters"
 x:Class="WidgetBoard.Views.WeatherWidgetView"
 x:DataType="viewmodels:WeatherWidgetViewModel">
 <ContentView.Resources>
 <converters:IsEqualToStateConverter
 x:Key="IsLoadingConverter"
 State="Loading" />
 </ContentView.Resources>
 <VerticalStackLayout>
 <Label
 Text="Today"
 FontSize="20"
 VerticalOptions="Center"
 HorizontalOptions="Start"
 TextTransform="Uppercase" />
 <!-- Loading -->
 <VerticalStackLayout
 �IsVisible="{Binding State,

Converter={StaticResource IsLoadingConverter}}">
 <ActivityIndicator
 �IsRunning="{Binding State, Converter=

{StaticResource IsLoadingConverter}}" />
 <Label
 Text="Loading weather data" />
 </VerticalStackLayout>
 </VerticalStackLayout>
</ContentView>

Chapter 11 Remote Data

374

�Displaying the Loaded State

In order to handle the error state, you need to add another instance of

your IsEqualToStateConverter, this time with the State property set

to Loaded.

<converters:IsEqualToStateConverter
 x:Key="HasLoadedConverter"
 State="Loaded" />

You can then use this converter in a binding to show/hide the

following UI; note that this will replace the original contents of the widget:

<!-- Loaded -->
<VerticalStackLayout
 �IsVisible="{Binding State, Converter={StaticResource

HasLoadedConverter}}">
 <Label
 VerticalOptions="Center"
 HorizontalOptions="Center">
 <Label.FormattedText>
 <FormattedString>
 <Span
 �Text="{Binding Temperature,

StringFormat='{0:F1}'}"
 FontSize="60"/>

 </FormattedString>
 </Label.FormattedText>
 </Label>

Chapter 11 Remote Data

375

 <Label
 Text="{Binding Weather}"
 FontSize="20"
 VerticalOptions="Center"
 HorizontalOptions="Center" />
 <Image
 Source="{Binding IconUrl}"
 WidthRequest="100"
 HeightRequest="100"/>
</VerticalStackLayout>

�Displaying the Error State

In order to handle the error state, you need to add another instance of your

IsEqualToStateConverter, this time with the State property set to Error.

<converters:IsEqualToStateConverter
 x:Key="HasErrorConverter"
 State="Error" />

You can then use this converter in a binding to show/hide the

following UI:

<!-- Error -->
<VerticalStackLayout
 �IsVisible="{Binding State, Converter={StaticResource

HasErrorConverter}}">
 <Label
 Text="Unable to load weather data" />
 <Button
 Text="Retry"
 Command="{Binding LoadWeatherCommand}" />
</VerticalStackLayout>

Chapter 11 Remote Data

376

You may have noticed that you have added a Button and bound its

command to the view model. You need to add this to your view model if

you wish to compile and run the application. The aim of the Button is to

allow the user to request a retry of loading the weather information if the

Error state is being shown.

Inside your WeatherWidgetViewModel.cs file, you need to make the

following change:

public ICommand LoadWeatherCommand { get; }

Then you need to update the constructor with the changes in bold:

public WeatherWidgetViewModel(IWeatherForecastService
weatherForecastService, ISecureStorage secureStorage)
{
 this.weatherForecastService = weatherForecastService;
 this.secureStorage = secureStorage;

 �LoadWeatherCommand = new Command(async () => await
LoadWeatherForecast());

 Task.Run(async () => await LoadWeatherForecast());
}

This means that when a load fails for whatever reason, the user will

have the option to press the retry button and the widget will attempt to

load the weather details again. It will walk through the states you added, so

the UI will show the different UI options to the user as this happens.

This type of failure handling is considered manual. There are ways to

automatically handle retries through a package called Polly.

�Network Resilience Handling

Polly is a fantastic package that started off as a community-based

implementation and has now been adopted into the .NET ecosystem

through the Microsoft.Extensions.Http.Resilience package. The code

Chapter 11 Remote Data

377

that was added earlier to load data from the Open Weather API isn’t the

most complex, but if you decided to add in the ability to handle connection

retries if a request fails and increase the delay between retry attempts, I am

sure you can imagine how complex it could become. We are going to add

such a feature in just a few lines with this new NuGet package.

Let’s go ahead and add the Microsoft.Extensions.Http.Resilience NuGet

package and then take a look at how to use it.

•	 Right-click the WidgetBoard solution.

•	 Select Manage NuGet Packages.

•	 Search for Microsoft.Extensions.Http.Resilience.

•	 Select the correct package.

•	 Click Add Package.

Now you can open the MauiProgram.cs file and make the following

changes (in bold):

builder.Services.AddHttpClient<WeatherForecastService>()
 .AddStandardResilienceHandler(static options =>
 {
 options.Retry = new HttpRetryStrategyOptions
 {
 BackoffType = DelayBackoffType.Exponential,
 MaxRetryAttempts = 3,
 UseJitter = true,
 Delay = TimeSpan.FromSeconds(2)
 };
 });

Chapter 11 Remote Data

378

The above code adds a new retry strategy that will

–– Retry a maximum of three attempts.

–– The first delay between retries will be two seconds, and

the delay will exponentially grow on each retry attempt.

–– UseJitter means there will be a random factor to

the delay.

That is all we need to add in a layer of resilience to the application.

Rules like this can be especially useful in the mobile world! This only

introduces what Polly can offer; if you want to learn more, then I would

highly recommend reading the documentation on all that it offers

(https://github.com/app-vnext/polly).

�Simplifying Web Service Access
The previous sections covered how you can interact directly with a web

service at the most basic level. It requires a bit of setup, but thankfully in

your scenario, this wasn’t too complicated. Some web services can require

a lot more setup or even return a lot more data.

When building your applications, the aim is to write as little code

as possible as it reduces the amount of code you need to maintain. This

statement isn’t advocating for writing shortened code that can be difficult

for a human to understand but instead stating that you want to focus on

the details that are core to the application that you are building and not

things like consuming a web service. Sure, you want to know that you are,

but having to write the underlying bits through the use of HttpClient can

become cumbersome. Thankfully there are packages out there that can

help you!

Chapter 11 Remote Data

https://github.com/app-vnext/polly

379

�Prebuilt Libraries
I first recommend that you investigate whether the web service provider

also provides a client library to make the consumption easier. Quite

often providers supply a library, especially when there is a layer of

authentication required. There are no official client libraries for the Open

Weather API; however, there are a number of NuGet packages that provide

some support for using the API.

�Code Generation Libraries
If no client library is available, you can look to using an auto generation

package to reduce the amount of code you need to write. Refit is a fantastic

package for this purpose. It allows you to define an interface representing

the web service call, and then Refit will do the rest.

So why didn’t I just start here? In a new project, you probably would

do so, but I always strongly feel that you need to gain an understanding of

what packages like Refit are doing before you really start to use them. This

can be invaluable when things go wrong and you have to debug exactly

what and why things are going wrong!

�Adding the Refit NuGet Package

Let’s go ahead and add the Refit.HttpClientFactory NuGet package and

then take a look at how to use it.

•	 Right-click the WidgetBoard solution.

•	 Select Manage NuGet Packages.

•	 Search for Refit.HttpClientFactory.

•	 Select the correct package.

•	 Click Add Package.

Chapter 11 Remote Data

380

Now that you have the NuGet package installed, you can use it.

Open your IWeatherForecastService.cs file and make the following

modifications shown in bold:

using Refit;

namespace WidgetBoard.Communications;

public interface IWeatherForecastService
{
 �[Get("/weather?lat={latitude}&lon={longitude}&units=metric&

appid={apiKey}")]
 �Task<Forecast?> GetForecast(double latitude, double

longitude, string apiKey);
}

The fantastic part of the above code is that you do not need to write

the implementation. Refit uses source code generators to do it for you! In

fact, it means you can delete your WeatherForecastService class as it is no

longer required.

The final change you are required to make is to change how you

register the IWeatherForecastService with your MauiAppBuilder in the

MauiProgram.cs file. Open it up and make the following changes.

First, add the using statement.

using Refit;

Then replace

builder.Services.AddSingleton<IWeatherForecastService,
WeatherForecastService>();

Chapter 11 Remote Data

381

with

builder.Services
 .AddRefitClient<IWeatherForecastService>()
 �.ConfigureHttpClient(c => c.BaseAddress = new Uri("https://

api.openweathermap.org/data/2.5"));

This new line of code makes use of the Refit extension methods that

enable you to consume an implementation of IWeatherForecastService

whenever you register a dependency on that interface. It is worth

reiterating that the implementation for the IWeatherForecastService

is automatically generated for you through the Refit package. For further

reading on this package, I thoroughly recommend their website at

https://reactiveui.github.io/refit/.

If you run up the application, you will see the same result as

Figure 11-2 – the weather widgets the weather as expected.

�Further Reading
You have added some complexities into your application in order to

handle the scenario when web service access doesn’t load as expected.

There is a really great library that can really help to reduce the amount of

code you need to write around these parts.

�StateContainer from CommunityToolkit.Maui
You had to build in converters and apply IsVisible bindings to control

which view is being displayed when your widget is in a specific state. The

StateContainer reduces that overhead so you “just” need to define the

states and the views for those states.

If you love to write less code, I recommend checking out the

Microsoft documentation at https://learn.microsoft.com/dotnet/
communitytoolkit/maui/layouts/statecontainer.

Chapter 11 Remote Data

https://reactiveui.github.io/refit/
https://learn.microsoft.com/dotnet/communitytoolkit/maui/layouts/statecontainer
https://learn.microsoft.com/dotnet/communitytoolkit/maui/layouts/statecontainer

382

�Summary
In this chapter, you have

•	 Learned about remote data

•	 Learned how you can interact with it

•	 Covered the common considerations

•	 Looked a concrete example with the Open Weather API

•	 Built your own implementation to consume the Open

Weather API

•	 Covered how to consume the data returned

•	 Talked through scenarios where things can go wrong

•	 Provided implementations to handle those scenarios

•	 Looked at how you can reduce the complexity of your

implementation with Refit

•	 Added in your Weather Widget

In the next chapter, you will

•	 Learn about permissions on the various platforms and

how to request them

•	 Learn how to use the Geolocation API

•	 Cover how to write your own platform-specific

interaction when necessary

•	 Discover how to tweak the UI based on the platform on

which your application is running

•	 Learn to tweak the UI through the use of the handler

architecture

Chapter 11 Remote Data

383

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch11.

�Extra Assignment
There are so many possibilities for accessing remote data in your

application! Here are some extra widgets I would like you to consider

creating.

�TODO Widget
The go-to example application to build in tutorials is a TODO application.

I would like you to expand upon this idea and add a TodoWidget into your

application. There are several TODO APIs that you could utilize to do this.

Do you have a favorite TODO service that you use? I personally like the

Microsoft TODO option. There is some good documentation over on the

Microsoft pages to help get you started at https://learn.microsoft.com/
graph/todo-concept-overview.

�Quote of the Day Widget
I know I certainly like to be inspired with a feel-good quote. Why don’t

you consider building a widget to refresh daily and show you a quote of

the day?

The They Said So Quotes API offers a good API for doing this exact job

with the documentation hosted at https://quotes.rest/.

The other concept that you will need to consider is how to trigger your

Scheduler class to trigger the refresh at midnight.

Chapter 11 Remote Data

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch11
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch11
https://learn.microsoft.com/en-us/graph/todo-concept-overview
https://learn.microsoft.com/en-us/graph/todo-concept-overview
https://quotes.rest/

384

�NASA Space Image of the Day Widget
I love some of the images that come from NASA. It is so cool to be able

to see into the reaches of space! Quite handily, they have a decent set of

APIs that can enable you to build a widget and show off these images! The

documentation on the NASA website really is great and should be able to

guide you through the process of accessing the data you need. The NASA

API documentation can be found at https://api.nasa.gov/.

I really can’t wait to see these widgets in action!

�Source Code
I would love for you to have an attempt at this extra assignment, but I have

also provided the source code. The source code for this extra assignment

can be found on the GitHub repository at https://github.com/Apress/
Introducing-.NET-MAUI-2nd-ed/tree/main/ch11-extra.

Chapter 11 Remote Data

https://api.nasa.gov/
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch11-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch11-extra

385© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_12

CHAPTER 12

Getting Specific

�Abstract
In this chapter, you will be learning about .NET MAUI Essentials and

how it enables you to access platform-specific APIs without having to

worry about any of the platform-specific complexities. Two concrete

examples are requesting permissions on each platform and accessing the

device’s geolocation information. You will explore what is required if you

really do need to interact with platform-specific APIs that have not been

abstracted for you. Finally, you will cover multiple techniques, concepts,

and architectures that enable you to tweak the UI and behavior of your

applications based on the platforms they are running on.

�.NET MAUI Essentials
In the previous chapter, you created a weather widget. You did not finish

the job, though, as it currently only loads the weather for Maui, Hawaii.

I don’t know about you, but I am not lucky enough to live there! In this

section, you will discover what the current device’s location is in terms of

longitude and latitude, and you will then send that information up to the

Open Weather API for a much more accurate weather summary of the

user’s current location.

https://doi.org/10.1007/979-8-8688-1189-0_12#DOI

386

In order to achieve this, you need an understanding of two key

concepts: the permissions system of each operating system and how to

access the APIs specific to GPS coordinates. Thankfully .NET MAUI has

you covered for both scenarios, but you do need to be aware of how they

work and any platform-specific differences. Let’s take a look at each to get

a better understanding.

�Permissions
A common theme I have been discussing in this book is how .NET MAUI

does a lot of the heavy lifting when it comes to dealing with each supported

platform. This continues with permissions because .NET MAUI abstracts a

large number of permissions.

It is worth noting that every operating system is different. Not

all require permissions for certain features. Refer to the Microsoft

documentation on what .NET MAUI supports and what is required for

each platform at https://learn.microsoft.com/dotnet/maui/platform-
integration/appmodel/permissions-available-permissions.

There are two key methods that enable you to interact with the

permission system in .NET MAUI.

�Checking the Status of a Permission

In order to check whether the user has already granted permission for your

application to use a specific feature, you can use the CheckStatusAsync

method on the Permissions class. For your weather widget, you need

access to the device's geolocation information. You have two options in

terms of the permission to use:

•	 LocationWhenInUse: This only allows the application

to access the geolocation information while the app is

open in the foreground.

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions-available-permissions
https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions-available-permissions

387

•	 LocationAlways: This allows the application to also

access the geolocation information even when the app

is backgrounded. This can be particularly useful for

exercise tracking applications that need to monitor the

user’s movement.

You only need the LocationWhenInUse option for your application.

PermissionStatus status = await Permissions.
CheckStatusAsync<Permissions.LocationWhenInUse>();

It is recommended that you check the status of the permission

before requesting it to gain an understanding of whether the user has

been asked before. On iOS, you are only allowed to ask once, and then

you are required to prompt the user to go to the Settings app and enable

permission if they wish to change their mind. Sadly, Android provides a

different approach and will return a status of Denied even if the user has

not been prompted before. In this scenario, you are then recommended

to call ShouldShowRationale to check whether the user really has been

prompted.

The possible values for PermissionStatus are as follows:

•	 Unknown: The permission is in an unknown state, or on

iOS, the user has never been prompted.

•	 Denied: The user denied the permission request, or on

Android, the user might not have been prompted.

•	 Disabled: The feature is disabled on the device.

•	 Granted: The user granted permission or it is

automatically granted.

•	 Restricted: In a restricted state.

Chapter 12 Getting Specific

388

�Requesting Permission

Once you have confirmed that the user has not been prompted with a

permission request, you can proceed to prompting them by using the

Permissions.RequestAsync method along with the specific permission to

request. In your example, this will be the LocationWhenInUse permission.

PermissionStatus status = await Permissions.
RequestAsync<Permissions.LocationWhenInUse>();

It is worth noting that the RequestAsync method needs to be run on

the main or UI thread. This is needed because it can result in presenting

the built-in system UI in order to ask the user if they wish to give

permission. Therefore, whenever you call Permissions.RequestAsync,

you must make sure your code is already running on the main thread with

the MainThread.IsMainThread property, or you can dispatch out to the

main thread with the MainThread.InvokeOnMainThreadAsync method.

It is considered best practice to only prompt the user for permission to

use a specific feature when they first try to use that feature. This helps to

provide context to the user around why the permission is being requested.

You may also find that the different platform providers (e.g., Apple,

Google, and Microsoft) have different rules they apply when reviewing

and approving the applications you submit to their stores. For this, I

recommend working with the most restrictive rules to save yourself pain

and effort.

Some further points that I want to highlight are as follows:

	 1.	 When considering the user experience, it is always

good to add a page into your application that

explains in enough detail why certain permissions

are needed. Once the user has had the chance to

read this, only then request the permission and let

the user agree.

Chapter 12 Getting Specific

389

	 2.	 Always make sure to not only test the happy path –

the user has granted permission. You should always

consider what will happen if permission has not

been granted.

	 3.	 This partially fits into point 3, but also consider

that certain features might be entirely disabled on a

device (e.g., location services). Make sure that your

application behaves as expected in these scenarios.

�Handling Permissions in Your Application

The following section of code comes recommended from the Microsoft

documentation site at https://learn.microsoft.com/dotnet/maui/
platform-integration/appmodel/permissions?#example. It has been

included and left unchanged as it helps to really highlight the differences

between platforms.

First, create the new folder and class for this new piece of

functionality. Call the folder Services. Add a new interface file and call it

ILocationService.cs under the Services folder. The contents of this new

interface should be updated to the following:

namespace WidgetBoard.Services;

public interface ILocationService
{
 Task<Location?> GetLocationAsync();
}

This is the definition of what a location service implementation

will provide: an asynchronous method that will ultimately return a

Location object.

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions?#example
https://learn.microsoft.com/dotnet/maui/platform-integration/appmodel/permissions?#example

390

Next, create an implementation. Add a new class file under the

Services folder and call it LocationService.cs. Modify the initial

contents to the following:

namespace WidgetBoard.Services;

public class LocationService : ILocationService
{
}

Now that you have a blank class, you can add the method for handling

permission requests ready for use.

private async Task<PermissionStatus>
CheckAndRequestLocationPermission()
{
 �PermissionStatus status = await Permissions.

CheckStatusAsync<Permissions.LocationWhenInUse>();
 if (status == PermissionStatus.Granted)
 {
 return status;
 }

 �if (status == PermissionStatus.Denied && DeviceInfo.
Platform == DevicePlatform.iOS)

 {
 // Prompt the user to turn on in settings
 �// On iOS once a permission has been denied it may not

be requested again from the application
 return status;
 }

Chapter 12 Getting Specific

391

 �if (Permissions.ShouldShowRationale<Permissions.
LocationWhenInUse>())

 {
 �// Prompt the user with additional information as to

why the permission is needed
 }

 �status = await Permissions.RequestAsync<Permissions.
LocationWhenInUse>();

 return status;
}

Now that you have added the ability to request the user’s permission to

use the geolocation APIs on the device, you can proceed to using it.

�Using the Geolocation API
.NET MAUI provides the ability to access each platform’s geolocation APIs

in order to retrieve a longitude and latitude representing where in the

world the device running the application is currently located. Full details

of what the API provides can be found at https://learn.microsoft.com/
dotnet/maui/platform-integration/device/geolocation.

�Registering the Geolocation Service

Open the MauiProgram.cs file and register the geolocation

implementation so that you can use it via the dependency injection layer.

You need to add the following line into the CreateMauiApp method:

builder.Services.AddSingleton(Geolocation.Default);

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation

392

�Using the Geolocation Service

This now means that you can add a dependency on the IGeolocation

interface and wherever .NET MAUI provides you with an instance. Let’s

use the IGeolocation implementation in your LocationService.cs file.

There are a few modifications you need to make, so I will walk through

each one.

Add a field for the IGeolocation implementation in the root of

the class.

private readonly IGeolocation geolocation;

Assign the IGeolocation implementation in the constructor.

public LocationService(IGeolocation geolocation)
{
 this.geolocation = geolocation;
}

Provide the method to return a Location object.

public async Task<Location?> GetLocationAsync()
{
 return await MainThread.InvokeOnMainThreadAsync(async () =>
 {
 var status = await CheckAndRequestLocationPermission();
 if (status != PermissionStatus.Granted)
 {
 return null;
 }
 return await this.geolocation.GetLocationAsync();
 });
}

Chapter 12 Getting Specific

393

This implementation first makes sure that you are running on the main

thread, which is required for location-based access. Then it calls your

permission handling method, and if the app has permission, it calls the

IGeolocation implementation and returns the resulting Location object.

Now you are ready to make use of the LocationService.

�Registering the LocationService

Open the MauiProgram.cs file and register the LocationService

implementation so that you can use it via the dependency injection layer.

You need to add the following line into the CreateMauiApp method:

builder.Services.AddSingleton<ILocationService,
LocationService>();

�Using the ILocationService

Let’s use the ILocationService implementation in your

WeatherWidgetViewModel.cs file. There are a few modifications you need

to make, so I will walk through each one

Add a field for the ILocationService implementation in the root of

the class.

private readonly ILocationService locationService;

Assign the ILocationService implementation in the constructor;

changes are in bold.

public WeatherWidgetViewModel(
 IWeatherForecastService weatherForecastService,
 ISecureStorage secureStorage,
 ILocationService locationService)

Chapter 12 Getting Specific

394

{
 this.weatherForecastService = weatherForecastService;
 this.locationService = locationService;
 �LoadWeatherCommand = new Command(async () => await

LoadWeatherForecast());
}

Modify your State enum to include a new value so that you can

handle when something goes wrong with permission access. Add a

PermissionError value, as can be seen below in bold.

public enum State
{
 None = 0,
 Loading = 1,
 Loaded = 2,
 Error = 3,
 PermissionError = 4
}

Modify your LoadWeatherForecast method to call your new

ILocationService implementation in order to find out the device’s

location and then use that to call the Open Weather API to find out the

weather at the device’s location. The changes are in bold.

private async Task LoadWeatherForecast()
{
 �var apiKey = await this.secureStorage.GetAsync("OpenWeather

ApiToken");

 if (apiKey is null)
 {
 return;
 }

Chapter 12 Getting Specific

395

 try
 {
 State = State.Loading;

 �var location = await this.locationService.
GetLocationAsync();

 if (location is null)
 {
 State = State.PermissionError;
 return;
 }

 �var forecast = await weatherForecastService.
GetForecast(location.Latitude, location.Longitude,
apiKey);

 Temperature = forecast.Main.Temperature;
 Weather = forecast.Weather.First().Main;
 IconUrl = forecast.Weather.First().IconUrl;

 State = State.Loaded;
 }
 catch (Exception ex)
 {
 State = State.Error;
 }
}

You have introduced a few changes here, so let’s break them down.

First, you are calling the locationService to get the device’s location.

If it returns null, it means the application does not have permission and

you set the State to PermissionError.

If you have permission, you pass the device’s current location into the

weatherForecastService.GetForecast method.

Chapter 12 Getting Specific

396

�Displaying Permission Errors to Your User

You have added the new state value and also assigned it in your view

model when you either fail to retrieve the permission setting or the user

has denied permission to the LocationWhenInUse feature. Now you can

add in support into your UI to respond to this value and show something

appropriate to the user. Open the WeatherWidgetView.xaml file and make

the following modifications.

Add in the converter instance inside the <ContentView.
Resources> tag.

<converters:IsEqualToStateConverter
 x:Key="HasPermissionErrorConverter"
 State="PermissionError" />

Then you can add a section that will render when the State

property is equal to PermissionError. You should add this into the

WeatherWidgetView.xaml file after the following section:

<!-- Error -->
<VerticalStackLayout
 �IsVisible="{Binding State,

Converter={StaticResource HasErrorConverter}}">
 ...
</VerticalStackLayout>
The section you want to add is as follows:
<!-- PermissionError -->
<VerticalStackLayout
 �IsVisible="{Binding State, Converter={StaticResource

HasPermissionErrorConverter}}">
 <Label
 Text="Unable to retrieve location data" />

Chapter 12 Getting Specific

397

 <Button
 Text="Retry"
 Command="{Binding LoadWeatherCommand}" />
</VerticalStackLayout>

Now that you have added all of the required bits of code to call into

the Permissions and Geolocation APIs, you need to configure each of your

supported platforms to enable the location permission.

�Configuring Platform-Specific Components
This is where .NET MAUI stops holding your hand and requires you to

do some work in the platform-specific folders. Many of the APIs that are

provided by .NET MAUI, as detailed in this section of the documentation

site at https://learn.microsoft.com/dotnet/maui/platform-
integration/, have the potential to require some level of platform-

specific setup. This will vary per platform. For example, for haptic support,

only Android requires some setup, whereas for the Geolocation API, all

platforms require some setup.

Thankfully .NET MAUI provides helpful exceptions and error messages

if you miss any of the platform-specific setup, and they usually indicate

the action required to fix the issue. Topics like this do make it imperative

that you really test your application on each of the platforms you wish to

support to verify that it behaves as expected.

Let’s set up each platform so that your app can fully support accessing

the device’s current location.

�Android

Android requires several permissions and features to be configured in

order for your application to use the LocationWhenInUse permission. You

can configure them inside the Platforms/Android/MainApplication.cs

file, so open it and make the following additions in bold:

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/
https://learn.microsoft.com/dotnet/maui/platform-integration/

398

using Android.App;
using Android.Runtime;
[assembly: UsesPermission(Android.Manifest.Permission.
AccessCoarseLocation)]
[assembly: UsesPermission(Android.Manifest.Permission.
AccessFineLocation)]
[assembly: UsesFeature("android.hardware.location", Required
= false)]
[assembly: UsesFeature("android.hardware.location.gps",
Required = false)]
[assembly: UsesFeature("android.hardware.location.network",
Required = false)]
namespace WidgetBoard;

Note that the use of the assembly keyword requires that the attributes

are applied at the assembly level and not on the class like the current

[Application] attribute usage. For further reference on how to get started

with geolocation, refer to the Microsoft documentation at https://
learn.microsoft.com/dotnet/maui/platform-integration/device/
geolocation?tabs=android-get-started.

If you run the application on Android now, you will see that the first

time you add a Weather widget onto a board, the system will present the

following popup to the user asking them to allow permission for your

application to use the location feature. Figure 12-1 shows the result of

running your application on Android.

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=android-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=android-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=android-get-started

399

Figure 12-1.  The application running on Android showing the
permission prompt when a weather widget is first added to a board

�iOS/Mac

Apple requires that you specify the reason your application wants to use

the Geolocation feature in the process of defining that your application

uses the feature. You can configure this by modifying the Platforms/iOS/
Info.plist and Platforms/MacCatalyst/Info.plist files for iOS and

Chapter 12 Getting Specific

400

Mac Catalyst, respectively. Both files require the same change, so let’s open

them and add the following lines in. Note that I am opting to edit the files

inside Visual Studio Code as I find it provides a better editing experience.

There is a built-in editor inside Visual Studio, but I personally prefer to edit

the XML directly. Add the following lines inside the <dict> element:

<key>NSLocationWhenInUseUsageDescription</key>
<string>In order to provide accurate weather
information.</string>

For further reference on how to get started with Geolocation, refer

to the Microsoft documentation at https://learn.microsoft.com/
dotnet/maui/platform-integration/device/geolocation?tabs=ios-
get-started.

If you run the application on iOS and macOS now, you will see that the

first time you add a Weather widget onto a board, the system will present

the following popup to the user asking them to allow permission for your

application to use the location feature. Figure 12-2 shows the result of

running the application on iOS.

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=ios-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=ios-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=ios-get-started

401

Figure 12-2.  The application running on iOS (left) and macOS
(right) showing the permission prompt when a weather widget is first
added to a board

Chapter 12 Getting Specific

402

�Windows

Windows applications have the concept of capabilities, and it is up to

developers to declare which capabilities are required in their applications.

In order to do so for your application, you need to modify the Platforms/
Windows/Package.appxmanifest file. Note that I am opting to edit the files

inside Visual Studio Code as I find it provides a better editing experience.

Add the following line inside the <Capabilities> element:

<DeviceCapability Name="location"/>

For further reference on how to get started with Geolocation, refer to the

Microsoft documentation at https://learn.microsoft.com/dotnet/maui/
platform-integration/device/geolocation?tabs=windows-get-started.

If you run the application on Windows now, you don’t see a permission

request popup. Figure 12-3 shows the result of running the application on

Windows.

Figure 12-3.  The application running on Windows showing the
permission prompt when a weather widget is first added to a board

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=windows-get-started
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geolocation?tabs=windows-get-started

403

�Platform-Specific API Access
While .NET MAUI does provide you with a lot of functionality out of the

box, there can be times when you need to write your own interaction with

the platform-specific layer to achieve your goals. Whatever functionality

can be achieved on a specific platform can also be achieved within a .NET

MAUI application. You just might have to do the heavy lifting yourself. If

your implementation is considered useful enough to other developers, you

should propose the changes back to the .NET MAUI team.

There are two main concepts you can utilize when building platform-

specific code in .NET MAUI. Let’s take a look at each one through the

simple example of building a LocationService that returns the longitude

and latitude of the headquarters for each platform provider (e.g., Google,

Apple, and Microsoft).

�Platform-Specific Code with Compiler Directives
You will most likely come across a usage of the #if compiler directive

when working on a .NET MAUI application. I am not a big fan of them, but

I do accept that in some scenarios, they do provide value.

namespace WidgetBoard.Services;

public class PlatformLocationService : ILocationService
{
 public Task<Location?> GetLocationAsync()
 {
 Location? location;
#if ANDROID
 location = new Location(37.419857, -122.078827);
#elif WINDOWS
 location = new Location(47.639722, -122.128333);

Chapter 12 Getting Specific

404

#else
 location = new Location(37.334722, -122.008889);
#endif
 return Task.FromResult(location);
 }
}

The above code will be compiled in different ways based on the target

platform. The resulting compiled code for the Android platform looks as

follows:

namespace WidgetBoard.Services;

public class PlatformLocationService : ILocationService
{
 public Task<Location?> GetLocationAsync()
 {
 Location? location;
 location = new Location(37.419857, -122.078827);
 return Task.FromResult(location);
 }
}

This means that only the code specific to the platform will be compiled

and shipped to that platform.

This approach can work well in this scenario, but as soon as you need

to use multiple classes or other platform-specific libraries, the code will

become complex very quickly. In more complex scenarios, you can use the

platform-specific folders created in your project for you.

Chapter 12 Getting Specific

405

�Platform-Specific Code in Platform Folders
I briefly covered these folders in Chapter 2. Each platform has a folder,

and the files inside each folder (e.g., /Platforms/Android/) will only be

compiled for that platform when you are targeting it. In order to create the

same PlatformLocationService from the previous section, you first need to

create a partial class under the Services folder with the following contents:

namespace WidgetBoard.Services;

public partial class PlatformLocationService : ILocationService
{
}

The above code will not compile now because you haven’t implemented

ILocationService. This is expected until you add in your platform-specific

implementations, so don’t worry. You add the partial keyword because this

is only a partial implementation. The platform-specific files and classes you

will add shortly will complete this partial implementation.

Next, you need to create your Android platform-specific

implementation. To do this, you add a new class file under the

/Platforms/Android/ folder and call it PlatformLocationService.cs,

just like the one above. You want to modify its contents to the following:

namespace WidgetBoard.Services;

public partial class PlatformLocationService
{
 public Task<Location?> GetLocationAsync()
 {
 return Task.FromResult<Location?>(
 new Location(37.419857, -122.078827));
 }
}

Chapter 12 Getting Specific

406

This class will only be compiled when the Android platform is being

targeted, and therefore, you get a very similar compiled output to the one

in the “Platform-Specific Code with Compiler Directives” section. The key

difference is that you don’t need to add any of those unpleasant #if directives.

When building platform-specific implementations this way, the

namespace of your partial classes must match! Otherwise, the compiler

won’t be able to build a single class.

We now need to add in the implementations for iOS, macOS, and

Windows; rather than stepping through the same steps as the Android

implementation above, we will mix and match the two approaches that we

have just covered: compiler directives and platform-specific folders.

Open the PlatformLocationService.cs file in the Services folder and

modify the contents to match the below (with changes in bold)

namespace WidgetBoard.Services;

public partial class MultiPlatformLocationService :
ILocationService
{
#if !ANDROID
 public Task<Location?> GetLocationAsync()
 {
 Location? location;
#if WINDOWS
 location = new Location(47.639722, -122.128333);
#elif MACCATALYST || IOS
 location = new Location(37.334722, -122.008889);
#else
 location = null;

Chapter 12 Getting Specific

407

#endif
 return Task.FromResult<Location?>(location);
 }
#endif
}

This implementation will only include the GetLocationAsync method

from this file for iOS, macOS, and Windows. The Android implementation

will include the GetLocationAsync method from the /Platforms/Android/

PlatformLocationService.cs file. Sometimes this approach can work well if

some platforms behave in the same way and can share implementations.

�Overriding the Platform-Specific UI
One fundamental part of .NET MAUI is in the fact that it utilizes the

underlying platform controls to handle the rendering of our applications.

This will result in our applications looking different on each of the

platforms. In the majority of scenarios, this is considered a good thing

because the application is in keeping with the platform’s look and feel.

At times, though, you will need to override some of the platform-specific

rendering or even just to tweak how controls render in your application on

a specific platform.

�OnPlatform
A common example of needing to change control properties is around the

sizing of text or spacing around controls (Margin or Padding). I always find

that the final finishing touches to get an application feeling really slick and

polished can result in needing to tweak details like this per platform. There

are two main ways to achieve this, and they depend on whether you are a

XAML- or C#-oriented UI builder. Let’s look over both with an example.

Chapter 12 Getting Specific

408

�OnPlatform Markup Extension

XAML, as mentioned, is not as feature rich in terms of what can be written

and achieved. Therefore, additional functionality is provided by .NET

MAUI to overcome these limitations. One such example is the OnPlatform

markup extension. XAML markup extensions help enhance the power and

flexibility of XAML by allowing element attributes to be set from a variety

of sources.

You might decide that in your ClockWidgetView.xaml file the FontSize

property is too large for iOS and Android and opt to change it only for

those platforms. Let’s take a look at the code and see how you can modify

the property based on the platform the application is running on.

<?xml version="1.0" encoding="utf-8" ?>
<Label
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"
 x:Class="WidgetBoard.Views.ClockWidgetView"
 FontSize="80"
 VerticalOptions="Center"
 HorizontalOptions="Center"
 x:DataType="viewmodels:ClockWidgetViewModel"
 Text="{Binding Time}">
 <Label.BindingContext>
 <viewmodels:ClockWidgetViewModel />
 </Label.BindingContext>
</Label>

The code above shows that the FontSize property is currently fixed to

a value of 80. With the OnPlatform markup extension, you can change this

value based on the platform the application is running on. The following

Chapter 12 Getting Specific

409

code example shows how you can retain the default value of 80 and then

override for the platforms that you wish:

FontSize="{OnPlatform Default=80, Android=25, iOS=30}"

The code example above states that all platforms will default to using a

FontSize of 60 unless the application is running on Android and a value of

25 will be used or if the application is running on iOS and a value of 30 will

be used.

�Conditional Statements

If you had built your UI in C# or wanted to at least modify the FontSize

property of a Label control in a similar way, you could write the following

conditional C# statement:

public ClockWidgetView()
{
 if (DeviceInfo.Platform == DevicePlatform.Android)
 {
 FontSize = 25;
 }
 else if (DeviceInfo.Platform == DevicePlatform.iOS)
 {
 FontSize = 30;
 }
 else
 {
 FontSize = 60;
 }
}

Chapter 12 Getting Specific

410

For further information on using the OnPlatform markup extension

and other possible markup extensions that enable the customization

of your application, please refer to the Microsoft documentation at

https://learn.microsoft.com/dotnet/maui/xaml/markup-extensions/
consume#onplatform-markup-extension.

There will be times when just overriding values like this is not enough.

For the more complex scenarios, you need to consider an architecture that

is completely new to .NET MAUI, and that is the handler architecture.

�Handlers
Handlers are an area where .NET MAUI really shines! If you have

come from a Xamarin.Forms background, you will appreciate the pain

that custom renderers brought. If you don’t have any Xamarin.Forms

experience, you are very lucky! I won’t dig down too deep into the details

of the old approach as this is a book on .NET MAUI and not the past;

however, I feel there is value in talking about the old issues and how they

have been overcome by the new handler architecture.

In both Xamarin.Forms and .NET MAUI, we predominantly build our

user interfaces with abstract controls: controls defined in the Microsoft

namespace and not specifically any platform controls. These controls

eventually need to be mapped down to the platform-specific layer. In the

Xamarin.Forms days, you would have a custom renderer. The renderer

would be responsible for knowing about the abstract control and also the

platform-specific control and mapping property values and event handlers

and such between the two. This is considered a tightly coupled design,

meaning that it becomes really quite difficult to enhance the controls and

their rendering. If you wanted to override a small amount of behavior,

you would have to implement a full renderer responsible for mapping all

properties/events. This was very painful!

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/xaml/markup-extensions/consume#onplatform-markup-extension
https://learn.microsoft.com/dotnet/maui/xaml/markup-extensions/consume#onplatform-markup-extension

411

In .NET MAUI, this concept of renderers has been entirely replaced

with handlers. This new architecture provides some extra layers between

the abstract controls in the .NET MAUI namespace and the underlying

platform-specific controls being rendered in our applications. This is

considered much more loosely coupled, mainly due to the fact that each

control will implement a number of interfaces and it is the handler’s

responsibility to interact with the interface rather than the specific control.

This has many benefits including the fact that multiple controls can all

implement the same interface and ultimately rely on the same single

handler. It also provides the ability to define smaller chunks of common

functionality, and as you all know, smaller classes and files are much

easier to read, follow, and ultimately maintain. Figure 12-4 shows how the

abstract Button class in .NET MAUI is mapped to the specific controls on

each platform.

Figure 12-4.  The handler architecture in .NET MAUI

If you wish to create a new control that needs to map to platform-

specific implementations, you should follow the pattern shown in

Figure 12-4. Let’s take the example of building a control to represent our

BoardLayout control that we created in Chapter 7. We opted to build

it using existing .NET MAUI controls, and therefore, we didn’t need to

implement any platform-specific components. We won’t be building

an actual control to support this, but we can look over the theory and

Chapter 12 Getting Specific

412

examples to show how it could have been implemented. Figure 12-5 shows

how the BoardLayout class would map onto platform-specific controls on

each layer.

Figure 12-5.  The handler architecture representing the BoardLayout
class in .NET MAUI

You didn’t take this approach in your scenario because there was no

benefit. In fact, it would result in more code because you would need to

map to each platform individually as well as implementing the layout

logic in each of those platform-specific layers. This concept may sound

like it will always cause more effort; however, in the situation of a Button,

it makes sense because each platform already has a definition of what a

button is and how it behaves.

Quite often as application developers, you will be using existing

controls rather than building your own controls, so rather than needing

to build everything you see in Figure 12-5, you can customize controls

through the use of handlers.

�Customizing Controls with Mappers

Mappers are key to the handler architecture. They define the actions

that will be performed when either a property is changed or a command

is sent between cross-platform controls and platform-specific views.

Chapter 12 Getting Specific

413

As an application developer, you have the ability to customize how

these mappings work. Let’s take a look at a concrete example – the

FixedDetailsPage that was added earlier on in the book has three Entry

controls to allow for user input. The following examples will show how to

make the application select all text inside an Entry when the user focuses

on it, apply this behavior to all Entry controls, and how to limit this

behavior by mapping to specific implementations.

First, let’s look at the platform-specific APIs that enable you to

implement the functionality. Don’t worry about adding code into the

application just yet; we will look over the implementation details and then

apply them later.

�Select All Text on Android

The .NET MAUI EntryHandler on Android uses the AppCompatEditText

widget. Handily this implementation provides the SetSelectAllOnFocus

method which makes the Android implementation a one-liner.

handler.PlatformView.SetSelectAllOnFocus(true);

�Select All Text on iOS/Mac Catalyst

The .NET MAUI EntryHandler on iOS and Mac Catalyst uses the

UITextField control. There are two steps to selecting all text in our

scenario; first, we would need to subscribe to the EditingDidBegin event,

and then inside that event, we would need to perform the selectAll

selector.

handler.PlatformView.EditingDidBegin += (s, e) =>
{
 �handler.PlatformView.PerformSelector(new ObjCRuntime.

Selector("selectAll"), null, 0.0f);
};

Chapter 12 Getting Specific

414

�Select All Text on Windows

The .NET MAUI EntryHandler on iOS and Mac Catalyst uses the TextBox

control. There are two steps to selecting all text on Windows: first, we

would need to subscribe to the GotFocus event, and then inside that event,

we would need to call SelectAll.

handler.PlatformView.GotFocus += (s, e) =>
{
 handler.PlatformView.SelectAll();
};

If you are familiar with any specific platform development (e.g., iOS

development in Swift), the code to perform the selecting of all text should

look familiar to doing it in that language (e.g. Swift), and that is because it

is using the platform-specific APIs.

This covers how to perform the selecting of all text when an Entry

gains focus; the final steps cover how to register this behavior to be

performed.

�Applying the Handler Globally

If you wanted to apply the above behavior globally to all Entry controls

in your application, then you could add the following code into the

CreateApp method in your MauiProgram.cs file:

Microsoft.Maui.Handlers.EntryHandler.Mapper.AppendToMapping(
"SelectAllText", (handler, view) =>
 {
#if ANDROID
 handler.PlatformView.SetSelectAllOnFocus(true);
#elif IOS || MACCATALYST
 handler.PlatformView.EditingDidBegin += (s, e) =>

Chapter 12 Getting Specific

415

 {
 �handler.PlatformView.PerformSelector(new ObjCRuntime.

Selector("selectAll"), null, 0.0f);
 };
#elif WINDOWS
 handler.PlatformView.GotFocus += (s, e) =>
 {
 handler.PlatformView.SelectAll();
 };
#endif
});

The result of the above will be to append our custom mapping that we

are naming “SelectAllText” to the EntryHandler, which means all Entry

controls will inherit this mapping.

�Applying the Handler on a Single Page

Alternatively if you wish to only apply this custom behavior on the

BoardDetailsPage screen of the application, then you can register the

mapping in the constructor for that page. Open the BoardDetailsPage.

xaml.cs file and modify the constructor to look as follows (changes

in bold):

public BoardDetailsPage(BoardDetailsPageViewModel
boardDetailsPageViewModel)
{
 InitializeComponent();
 BindingContext = boardDetailsPageViewModel;
 �Microsoft.Maui.Handlers.EntryHandler.Mapper.Appen

dToMapping("SelectAllText", (handler, view) =>

Chapter 12 Getting Specific

416

 {
#if ANDROID
 �handler.PlatformView.SetSelectAllOnFocus(true);
#elif IOS || MACCATALYST
 handler.PlatformView.EditingDidBegin += (s, e) =>
 {
 �handler.PlatformView.PerformSelector(new

ObjCRuntime.Selector("selectAll"), null, 0.0f);
 };
#elif WINDOWS
 handler.PlatformView.GotFocus += (s, e) =>
 {
 handler.PlatformView.SelectAll();
 };
#endif
 });
}

The result of the above will be to append our custom mapping that we

are naming “SelectAllText” to the EntryHandler, which means all Entry

controls on the BoardDetailsPage will inherit this mapping.

�Applying the Handler to Specific Instances

If you wish to only modify the behavior for a subset of the Entry controls in

your page/application, then you can do one of the following:

	 1.	 Subscribe to the HandlerChanged event from the

Entry control and register the same code as above.

	 2.	 Create your own Entry subclass (let’s call it

MyEntry), and then in the above code section, place

an if (view is MyEntry) statement around the

compiler directives.

Chapter 12 Getting Specific

417

�Summary
In this chapter, you

•	 Learned about permissions on the various platforms

and how to request them

•	 Learned how to use the Geolocation API

•	 Wrote your own platform-specific interaction when

necessary

•	 Discovered how to tweak the UI based on the platform

upon which your application is running

•	 Further tweaked the UI through the use of the handler

architecture

In the next chapter, you will

•	 Learn what testing is and why it is important

•	 Cover what unit testing is and how you can apply it to a

.NET MAUI application

•	 Learn what snapshot testing is and how you can

implement it

•	 Gain an understanding of device tests and how you can

apply them to your applications

•	 Look to the future for yet more testing goodness

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch12.

Chapter 12 Getting Specific

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch12
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch12

418

�Extra Assignment
You have only scratched the surface on the platform integration APIs that

.NET MAUI offers you. I would love for you to look over the other possible

APIs and build your own widgets that would benefit from them. The

documentation for the platform integration APIs can be found at https://
learn.microsoft.com/dotnet/maui/platform-integration/.

�Barometer Widget
You can make use of the Barometer API in order to report the ambient

air pressure back to the user. In fact, this might be a good addition to the

Weather widget rather than a whole new widget. The documentation for

this API can be found at https://learn.microsoft.com/dotnet/maui/
platform-integration/device/sensors?#barometer.

�Geocoding Lookup
I am reluctant to enable permissions like location access to apps I don’t

believe really need them. Perhaps you can enhance your Weather widget

to allow the user to supply their nearest city, town, or postal code and

then use the Geocoding API to reverse lookup the longitude and latitude

information required for the Open Weather API. The documentation

for the Geocoding API can be found at https://learn.microsoft.com/
dotnet/maui/platform-integration/device/geocoding.

�Source Code
I would love for you to have an attempt at this extra assignment, but I have

also provided the source code. The source code for this extra assignment

can be found on the GitHub repository at https://github.com/Apress/
Introducing-.NET-MAUI-2nd-ed/tree/main/ch12-extra.

Chapter 12 Getting Specific

https://learn.microsoft.com/dotnet/maui/platform-integration/
https://learn.microsoft.com/dotnet/maui/platform-integration/
https://learn.microsoft.com/dotnet/maui/platform-integration/device/sensors?#barometer
https://learn.microsoft.com/dotnet/maui/platform-integration/device/sensors?#barometer
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geocoding
https://learn.microsoft.com/dotnet/maui/platform-integration/device/geocoding
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch12-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch12-extra

419© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_13

CHAPTER 13

Testing

�Abstract
Testing is such an important part of the software development process;

it enables you to verify that what you have delivered is what was required

and also validate that the software behaves correctly. It also provides the

safety net of catching regressions in the products that you build.

There are many different approaches for designing and writing tests

and where they fit into the software development process. This chapter is

not intended to provide full insight into those approaches, but it will expose

you to various methods of testing a .NET MAUI application, why they can be

beneficial, and pique your interest in learning to use them in more depth.

�Unit Testing
Unit testing is the process of ensuring that small units, typically a method

or class, of an application meet their design and behave as intended. One

big benefit of testing such a small unit of the code is that it makes it easier

for you to identify where issues may lie or creep in as part of regression.

I have worked on many legacy systems throughout my career where the

teams neglected to apply unit testing, and the experience when trying to

identify the cause of a bug in a large system really can be costly in terms of

time and money.

https://doi.org/10.1007/979-8-8688-1189-0_13#DOI

420

Despite unit testing featuring near the end of this book, it is a concept

that should be adopted early in the development process. Unit testing can

aid in the design and building of code that is easier to read and maintain

because it forces you to expose these small units of functionality and

ultimately follow SOLID principles.

Unit testing itself will not catch all bugs in the system and should not

be relied upon as a sole means of testing your applications. When used in

combination with other forms of testing such as integration, functional, or

end-to-end testing, you can build up confidence that your application is

stable and delivers what is required.

Let’s see how to implement unit testing with .NET MAUI.

�Unit Testing in .NET MAUI
.NET MAUI applications are, as the name suggests, .NET-based projects,

meaning that any of the existing .NET-based unit testing frameworks can

be used.

As it currently stands, the default .NET MAUI project is not compatible

with a unit test project. I will cover how to solve this in the “Adding a Unit

Test Project to Your Solution” section.

There are three well-known frameworks that come with template

support in Visual Studio, meaning you can create them with the File ➤ Add

New Project option. The three frameworks are listed below.

�xUnit

xUnit (https://xunit.net) appears to be the choice of the .NET MAUI

team. One main reason for this is likely the support around being able to

run xUnit-based unit tests on actual devices, meaning you can test device-

specific implementations.

Chapter 13 Testing

https://xunit.net

421

�NUnit

NUnit (https://nunit.org) is an old favorite of mine. I have used it on

so many projects in the past! It has some great features like being able to

run the same test case with multiple sets of data to reduce the amount of

testing code you need to write and ultimately maintain.

�MSTest

MSTest is a testing framework that is built and supplied by Microsoft. It

doesn’t appear as feature rich as NUnit or xUnit, but it still does a great job

(https://learn.microsoft.com/dotnet/core/testing/unit-testing-
with-mstest).

�Your Chosen Testing Framework

We will be using xUnit for this book mainly due to the benefits it brings

with being able to also run the unit tests on devices.

Tests in xUnit are decorated with the [Fact] attribute with the

expectation that as the author of the test methods, you will name them in a

way that defines a fact which the test will prove to be true.

Most of the test frameworks are quite similar and tend to differ in terms

of keywords when identifying tests. Go with whatever testing framework

you are most comfortable with. If you do not have much experience

with any, perhaps experiment with each to see which gives you the best

experience. At the end of the day, you will be building and maintaining

these tests so it needs to benefit you and your team.

�Adding Your Own Unit Tests
There are some steps that you need to follow in order to make sure that

you can unit test your .NET MAUI application – I should add that this is

only if you wish to unit test the .NET MAUI application project directly; if

Chapter 13 Testing

https://nunit.org
https://learn.microsoft.com/dotnet/core/testing/unit-testing-with-mstest
https://learn.microsoft.com/dotnet/core/testing/unit-testing-with-mstest

422

you have class library projects with the code you wish to unit test, then this

can be done without the following changes. Let’s add a test project to the

solution and then make the necessary changes.

�Adding a Unit Test Project to Your Solution

	 1.	 Click the File menu.

	 2.	 Click Add.

	 3.	 Click New Project.

	 4.	 Enter Test in the Search for templates box.

Figure 13-1 shows the Add a new project dialog in

Visual Studio.

Figure 13-1.  Add a new project dialog in Visual Studio

Chapter 13 Testing

423

	 5.	 Select xUnit Test Project.

	 6.	 Click Next.

	 7.	 Enter a name for the project. I opted for

WidgetBoard.Tests and find that appending .Tests or

.UnitTests provides a common way to distinguish

between application and test projects. This is also

a common naming convention that simplifies

searching for all unit test projects when running

in a CI pipeline. I will cover this in more detail in

Chapter 15.

	 8.	 Click Next.

	 9.	 Select the framework. The default should be fine;

just make sure it matches the target version of the

.NET MAUI application project.

	 10.	 Click Create.

�Modify Your Application Project to Target net9.0

Sadly, the current .NET MAUI project template does not include the

net9.0 target framework, meaning that it is not initially compatible with

a standard unit test project. In order to correct this, you can manually

add the net9.0 target framework. Open the WidgetBoard/WidgetBoard.
csproj file in Visual Studio Code or your favorite text editor and make the

following changes.

Modify the first TargetFrameworks element to include net9.0 (changes

in bold):

<TargetFrameworks>net9.0;net9.0-android;net9.0-ios;net9.0-
maccatalyst</TargetFrameworks>

Chapter 13 Testing

424

Add a Condition attribute to the OutputType element (changes

in bold):

<OutputType Condition="'$(TargetFramework)' != 'net9.0'">Exe
</OutputType>

Without this second change, you will see a compilation error reporting

that error CS5001: Program does not contain a static 'Main' method

suitable for an entry point. This is due to the fact that you are building an

application and .NET applications expect to have a static Main method

as the entry point to the application. The OutputType for .NET MAUI

applications must be Exe, which might feel slightly confusing as you rarely

end up with an exe file that will be delivered.

If you are building against a newer version of .NET MAUI, you can

replace net9.0 with the version you are using, such as net10.0.

�Adding a Reference to the Project to Test

Now you need to add a reference from your test project onto the main

application project.

	 1.	 Right-click WidgetBoard.Tests.

	 2.	 Click Add.

	 3.	 Click Project Reference.

	 4.	 Select WidgetBoard from the list. Figure 13-2 shows

the Reference Manager dialog in Visual Studio.

Chapter 13 Testing

425

Figure 13-2.  Reference Manager in Visual Studio

	 5.	 Click OK.

�Modify Your Test Project to Use MAUI Dependencies

The final step is to make your test project bring in the .NET MAUI

dependencies just like the main application project. Open up the

WidgetBoard.Tests/WidgetBoard.Tests.csproj file in Visual Studio

Code or your favorite text editor and make the following changes.

The way to bring in the .NET MAUI dependencies is to add the NuGet

packages to the test project. Normally you could just add this through

Visual Studio or your favorite package manager UI, but we will do this

manually and explain why afterward. Modify the ItemGroup element that

contains <PackageReference /> elements, which should now look like

this; the changes are in bold:

Chapter 13 Testing

426

<ItemGroup>
 �<PackageReference Include="coverlet.collector"

Version="6.0.2"/>
 �<PackageReference Include="Microsoft.NET.Test.Sdk"

Version="17.11.1"/>
 <PackageReference Include="xunit" Version="2.9.2"/>
 �<PackageReference Include="xunit.runner.visualstudio"

Version="2.8.2"/>
 �<PackageReference Include="Microsoft.Maui.Controls"

Version="$(MauiVersion)"/>
 �<PackageReference Include="Microsoft.Maui.Controls.

Compatibility" Version="$(MauiVersion)"/>
</ItemGroup>

The reason why we have made this change manually is due to the

Version value that we added; we did not add a specific version but instead

used the variable $(MauiVersion); this makes use of the installed version.

Now you have set up everything ready to begin writing and running your

unit tests.

�Testing Your View Models
The MVVM architecture lends itself very well to unit testing each

individual component.

First, you need to create a ViewModels folder in your

WidgetBoard.Tests project and then add a new class file called

BoardDetailsPageViewModelTests.cs. It is good practice to keep folders

and tests named similarly to the code that they are testing to make it easier

to organize and locate.

Now you can add in your first set of tests.

Chapter 13 Testing

427

�Testing BoardDetailsPageViewModel

Inside the class file that you just created, add the following:

[Fact]
public void SaveCommandCannotExecuteWithoutBoardName()
{
 var viewModel = new BoardDetailsPageViewModel(null, null);

 Assert.Equal(string.Empty, viewModel.BoardName);
 Assert.False(viewModel.SaveCommand.CanExecute(null));
}

[Fact]
public void SaveCommandCanExecuteWithBoardName()
{
 var viewModel = new BoardDetailsPageViewModel(null, null);

 viewModel.BoardName = "Work";
 Assert.True(viewModel.SaveCommand.CanExecute(null));
}

�Testing INotifyPropertyChanged

I covered in Chapter 4 that INotifyPropertyChanged serves as the

mechanism to keep your views and view models in sync; therefore, it can

be really useful to verify that your view models are correctly implementing

INotifyPropertyChanged by ensuring that it raises the PropertyChanged

event when it should.

The following test shows how to create an instance of the

BoardDetailsPageViewModel, subscribe to the PropertyChanged event,

modify a property that you expect to fire the PropertyChanged event, and

then assert that the event was invoked:

Chapter 13 Testing

428

[Fact]
public void SettingBoardNameShouldRaisePropertyChanged()
{
 var invoked = false;
 var viewModel = new BoardDetailsPageViewModel(null, null);

 viewModel.PropertyChanged += (sender, e) =>
 {
 �if (e.PropertyName?.Equals(nameof(BoardDetailsPage

ViewModel.BoardName)) is true)
 {
 invoked = true;
 }
 };
 viewModel.BoardName = "Work";
 Assert.True(invoked);
}

This provides you with the confidence to know that if the BoardName is

not showing in your user interface, it will probably not be an issue inside

the view model.

�Testing Asynchronous Operations
Many modern applications involve some level of asynchronous operation,

and a perfect example is your use of the Open Weather API in order to load

the current location’s weather. The WeatherWidgetViewModel relies on an

implementation of the IWeatherForecastService interface you created

in Chapter 11. Unit tests against specific implementations like this can

be considered flaky. A flaky test is one that provides inconsistent results.

Web service access can exhibit this type of behavior when unit testing

given access limits on the API or other potential issues that could impact a

reliable test run.

Chapter 13 Testing

429

In order to remove test flakiness, you can create a mock

implementation that will provide a set of consistent behavior.

�Creating Your ILocationService Mock

Create a new folder in your WidgetBoard.Tests project and call it Mocks.

I covered this before, but organizing your code in such a way really can

make it much easier to maintain. With this new folder, you can create

a new class file inside and call it MockLocationService.cs. Modify the

contents to the following:

using WidgetBoard.Services;

namespace WidgetBoard.Tests.Mocks;

public class MockLocationService : ILocationService
{
 private readonly Location? location;
 private readonly TimeSpan delay;

 �private MockLocationService(Location? mockLocation,
TimeSpan delay)

 {
 location = mockLocation;
 this.delay = delay;
 }

 �public static ILocationService ThatReturns(Location?
location, TimeSpan after) =>

 new MockLocationService(location, after);

 �public static ILocationService
ThatReturnsNoLocation(TimeSpan after) =>

 new MockLocationService(null, after);

Chapter 13 Testing

430

 public async Task<Location?> GetLocationAsync()
 {
 await Task.Delay(this.delay);
 return this.location;
 }
}

The implementation you provided for the GetLocationAsync

method forces a delay based on the supplied TimeSpan parameter in

the constructor to mimic a network delay and then return the location

supplied in the constructor.

One key detail I really like to use when building mocks is to make the

usage of them in my tests as easy to read as possible. You can see that the

MockLocationService cannot be instantiated because it has a private

constructor. This means that to use it, you must use the ThatReturns or

ThatReturnsNoLocation method. Look at this and see how much more

readable it is:

MockLocationService.ThatReturns(new Location(0.0, 0.0), after:
TimeSpan.FromSeconds(2));

The above is much more readable than the following because it

includes the intent:

new MockLocationService(new Location(0.0, 0.0), TimeSpan.
FromSeconds(2));

�Creating Your SecureStorage Mock

You can add a third file into the Mocks folder and call this class file

MockSecureStorage.cs. Modify the contents to the following:

Chapter 13 Testing

431

namespace WidgetBoard.Tests.Mocks;

public class MockSecureStorage : ISecureStorage
{
 �private readonly Dictionary<string, string?> values = new();

 private MockSecureStorage(string key, string value)
 {
 values.Add(key, value);
 }

 �public static MockSecureStorage ThatContains(string key,
string value) =>

 new MockSecureStorage(key, value);

 public Task<string?> GetAsync(string key)
 {
 return Task.FromResult(values[key]);
 }

 public Task SetAsync(string key, string value)
 {
 values[key] = value;
 return Task.CompletedTask;
 }

 public bool Remove(string key)
 {
 if (values.ContainsKey(key))
 {
 values.Remove(key);
 return true;
 }

 return false;
 }

Chapter 13 Testing

432

 public void RemoveAll()
 {
 values.Clear();
 }
}

The implementation you provided stores and retrieves the “secure”

values inside a dictionary to mimic a real implementation on a device.

�Creating Your WeatherForecastService Mock

You can add a third file into the Mocks folder and call this class file

MockWeatherForecastService.cs. Modify the contents to the following:

using WidgetBoard.Communications;

namespace WidgetBoard.Tests.Mocks;

public class MockWeatherForecastService :
IWeatherForecastService
{
 private readonly Forecast? forecast;
 private readonly TimeSpan delay;

 �private MockWeatherForecastService(Forecast? forecast,
TimeSpan delay)

 {
 this.forecast = forecast;
 this.delay = delay;
 }

 �public static IWeatherForecastService ThatReturns(Forecast?
forecast, TimeSpan after) =>

 new MockWeatherForecastService(forecast, after);

Chapter 13 Testing

433

 �public static IWeatherForecastService
ThatReturnsNoForecast(TimeSpan after) =>

 new MockWeatherForecastService(null, after);

 �public async Task<Forecast?> GetForecast(double latitude,
double longitude, string apiKey)

 {
 await Task.Delay(this.delay);
 return forecast;
 }
}

The implementation you provided for the GetForecast method forces a

delay based on the supplied TimeSpan parameter in the constructor to mimic

a network delay and then return the forecast supplied in the constructor.

�Creating Your Asynchronous Tests

With your mocks in place, you can write tests that will verify the

behavior of your application when calling asynchronous and potentially

long running operations. You need to add a new class file to your

ViewModels folder in the WidgetBoard.Tests project and call it

WeatherWidgetViewModelTests.cs and then modify the contents to the

following:

using WidgetBoard.Tests.Mocks;
using WidgetBoard.ViewModels;

namespace WidgetBoard.Tests.ViewModels;

public class WeatherWidgetViewModelTests
{
}

Chapter 13 Testing

434

Now you can proceed to adding three tests to cover a variety of

different scenarios.

[Fact]
public async Task NullLocationResultsInPermissionErrorState()
{
 var viewModel = new WeatherWidgetViewModel(
 �MockWeatherForecastService.ThatReturnsNoForecast(after:

TimeSpan.FromSeconds(5)),
 �MockSecureStorage.ThatContains("OpenWeatherApiToken",

"SomethingSecure"),
 �MockLocationService.ThatReturnsNoLocation(after:

TimeSpan.FromSeconds(2)));

 await viewModel.LoadWeatherForecast();

 Assert.Equal(State.PermissionError, viewModel.State);
 Assert.Equal(viewModel.Weather, string.Empty);
}

This first test, as the name implies, verifies that if a null location is

returned from the ILocationService implementation, the view model

State will be set to PermissionError and no Weather will be set.

[Fact]
public async Task NullForecastResultsInErrorState()
{
 var viewModel = new WeatherWidgetViewModel(
 �MockWeatherForecastService.ThatReturnsNoForecast(after:

TimeSpan.FromSeconds(5)),
 �MockSecureStorage.ThatContains("OpenWeatherApiToken",

"SomethingSecure"),
 �MockLocationService.ThatReturns(new Location(0.0, 0.0),

after: TimeSpan.FromSeconds(2)));

Chapter 13 Testing

435

 await viewModel.LoadWeatherForecast();

 Assert.Equal(State.Error, viewModel.State);
 Assert.Equal(viewModel.Weather, string.Empty);
}

This second test, as the name implies, verifies that if a null forecast is

returned from the IWeatherForecastService implementation, the view

model State will be set to Error and no Weather will be set.

[Fact]
public async Task ValidForecastResultsInSuccessfulLoad()
{
 var weatherForecastService =
 MockWeatherForecastService.ThatReturns(
 new Communications.Forecast
 {
 Main = new Communications.Main
 {
 Temperature = 18.0
 },
 Weather =
 [
 new Communications.Weather
 {
 Icon = "abc.png",
 Main = "Sunshine"
 }
]
 },
 after: TimeSpan.FromSeconds(5));

Chapter 13 Testing

436

 var locationService = MockLocationService.ThatReturns(
 new Location(0.0, 0.0),
 after: TimeSpan.FromSeconds(2));

 var viewModel = new WeatherWidgetViewModel(
 weatherForecastService,
 �MockSecureStorage.ThatContains("OpenWeatherApiToken",

"SomethingSecure"),
 locationService);

 await viewModel.LoadWeatherForecast();

 Assert.Equal(State.Loaded, viewModel.State);
 Assert.Equal("Sunshine", viewModel.Weather);
}

This final test, as the name implies, verifies that if a valid forecast is

returned from the IWeatherForecastService implementation, the view

model State will be set to Loaded and the Weather will be correctly set.

�Testing Your Views
It is possible to write unit tests that will verify the behavior of your views.

�Creating Your ClockWidgetViewModel Mock

In order to verify your ClockWidgetView, you need to provide it with a view

model. Your ClockWidgetViewModel currently has some complexities in it

that will make it difficult to use in the test. It displays the current date/time.

Let’s create a mock to remove this potential difficulty. Inside your Mocks

folder, add a new class file called MockClockWidgetViewModel.cs and

modify the contents to match the following:

Chapter 13 Testing

437

using WidgetBoard.ViewModels;

namespace WidgetBoard.Tests.Mocks;

public class MockClockWidgetViewModel : IWidgetViewModel
{
 public int Position { get; set; }

 public string Type => "Mock";

 public MockClockWidgetViewModel(DateTime time)
 {
 Time = time;
 }

 public DateTime Time { get; }
 public Task InitializeAsync() => Task.CompletedTask;
}

Now you can use this in your unit tests to verify that your

ClockWidgetView binds correctly to its view model.

�Creating Your View Tests

First, create a Views folder in your WidgetBoard.Tests project and then add

a new class file called ClockWidgetViewTests.cs.

using WidgetBoard.Tests.Mocks;
using WidgetBoard.Views;

namespace WidgetBoard.Tests.Views;

public class ClockWidgetViewTests
{
 [Fact]
 public void TextIsUpdatedByTimeProperty()

Chapter 13 Testing

438

 {
 var time = new DateTime(2022, 01, 01);
 var clockWidget = new ClockWidgetView(null);
 Assert.Null(clockWidget.Text);

 �clockWidget.WidgetViewModel = new MockClockWidget
ViewModel(time);

 �clockWidget.BindingContext = clockWidget.WidgetViewModel;

 Assert.Equal(time.ToString(), clockWidget.Text.Trim());
 }
}

The test TextIsUpdatedByTimeProperty creates a new

ClockWidgetView, assigns your new MockClockWidgetViewModel, and then

verifies that the Text property of the widget is correctly updated to reflect

the value from the Time property on your view model through its binding.

�Device Testing
Device testing is really a form of unit testing; however, it provides some

unique abilities so it deserves its own top-level section. It essentially

enables you to write unit tests that can be run on a device and therefore

truly test any platform-specific pieces of functionality. A perfect example

of this is to test the PlatformLocationService you implemented in the

previous chapter to return the longitude and latitude coordinates of each

platform provider’s headquarters.

�Creating a Device Test Project
You need to create another project in order to handle the running of the

device tests. The documentation on the GitHub repository covers all that

is needed, so go to https://github.com/shinyorg/xunit-maui but I will

repeat the steps here for clarity.

Chapter 13 Testing

https://github.com/shinyorg/xunit-maui

439

�Add a New Project to the Solution

•	 Right-click the “WidgetBoard” solution in Visual Studio.

•	 Select Add New Project….

•	 Select .NET MAUI Application.

•	 Enter the name WidgetBoard.DeviceTests.

�Add the Device Test Runner NuGet Package

•	 Right-click the “WidgetBoard.DeviceTests” project in

Visual Studio.

•	 Select Manage NuGet Packages….

•	 Enter Shiny.Xunit.Runners.Maui into the search bar.

•	 Select and install the package.

�Remove Unnecessary Contents

The default template will create some entries that you don’t need, and I

always recommend removing any bits of content that you don’t need. You

can delete the following:

•	 MainPage.xaml and MainPage.xaml.cs

•	 App.xaml and App.xaml.cs

•	 AppShell.xaml and AppShell.xaml.cs

•	 All folders underneath /Resources except Styles

Chapter 13 Testing

440

�Replace CreateMauiApp

Inside the MauiProgram.cs file, the CreateMauiApp method can be

replaced with the following:

public static MauiApp CreateMauiApp() => MauiApp
 .CreateBuilder()
 .ConfigureTests(new TestOptions
 {
 Assemblies =
 {
 typeof(MauiProgram).Assembly
 }
 })
 .UseVisualRunner()
 .Build();

The above code will register the application to rely on running a

visual application; sadly there is not the ability to run a headless mode

and therefore in an automated manner, but I am hopeful this will come in

the future.

�Add a Reference to the WidgetBoard Project

You can add the reference as follows:

•	 Right-click the WidgetBoard.DeviceTests project.

•	 Select Add ➤ Reference.

•	 Select Projects.

•	 Select WidgetBoard.

•	 Click Add.

Chapter 13 Testing

441

This will result in WidgetBoard.DeviceTests depending on the

WidgetBoard project file and will allow you to refer to the public contents

of this project.

�Remove Extra Entries in Project File

Modify the new WidgetBoard.DeviceTests.csproj project file by deleting

the following section:

<ItemGroup>
 �<MauiIcon Include="Resources\AppIcon\appicon.svg"

ForegroundFile="Resources\AppIcon\appiconfg.svg"
Color="#512BD4"/>

 �<MauiSplashScreen Include="Resources\Splash\splash.svg"
Color="#512BD4" BaseSize="128,128"/>

 <MauiImage Include="Resources\Images*"/>
 �<MauiImage Update="Resources\Images\dotnet_bot.png"

Resize="True" BaseSize="300,185"/>

 <MauiFont Include="Resources\Fonts*"/>

 �<MauiAsset Include="Resources\Raw**" LogicalName="%(
RecursiveDir)%(Filename)%(Extension)"/>

</ItemGroup>

The reason for this is that by referencing the main app project, the

build tasks detect duplicate files and will produce build errors. Note that

if you are not referencing another .NET MAUI app project in your device

runner test project, then you want to keep the above.

�Adding a Device-Specific Test
Add a new folder and call it Services. Then add a new class file and call it

PlatformLocationServiceTests.

Chapter 13 Testing

442

In the new file, you can add the following contents:

using WidgetBoard.Services;
using Xunit;

namespace WidgetBoard.DeviceTests.Services;

public class PlatformLocationServiceTests
{
 [Fact]
 �public async Task GetLocationAsyncWillReturnPlatform

SpecificLocation()
 {
 var locationService = new PlatformLocationService();
 �var location = await locationService.

GetLocationAsync();

#if ANDROID
 Assert.Equal(37.419857, location.Latitude);
 Assert.Equal(-122.078827, location.Longitude);
#elif WINDOWS
 Assert.Equal(47.639722, location.Latitude);
 Assert.Equal(-122.128333, location.Longitude);
#else
 Assert.Equal(37.334722, location.Latitude);
 Assert.Equal(-122.008889, location.Longitude);
#endif
 }
}

The above is a relatively simple test, and in a real application, we

would likely have concepts that are not hard-coded but this will prove

the point.

Chapter 13 Testing

443

Now that you have written your tests, you can run them on your

devices.

�Running Device-Specific Tests
In order to run your tests on a device, you first need to set your

WidgetBoard.DeviceTests project as the startup project. You can do this as

follows:

•	 Right-click the WidgetBoard.DeviceTests project in

Solution Explorer.

•	 Select Set as Startup Project.

Now start the application from Visual Studio. Figure 13-3 shows the

device test runner screen running on Windows.

Figure 13-3.  Device test runner on the Windows platform

Chapter 13 Testing

444

You can click on a specific test and choose to run it, or you can simply

Run All Tests. This part is entirely manual so it will require a human to

perform these tasks but it can be left to run for as long as the tests need.

Finally, you will see the results of the test runs, and you can click them

to see more information. Figure 13-4 shows the device test runner and a

set of test results.

Figure 13-4.  Test run result for the GetLocationAsyncWillReturn
PlatformSpecificLocation device test

You can run these tests on all the platforms that you support to make

sure that the code does what is expected.

�Snapshot Testing
Snapshot testing is similar to unit testing, but it avoids the need to write

Assert statements to manually define each expectation in the test. Instead,

the result of a test is compared to a golden master. A golden master is a

snapshot of a previous test run that you as the test author accept as the

Chapter 13 Testing

445

expected result for subsequent test runs. A snapshot can be anything

ranging from a screenshot of the application to a serialization of an object

in memory. If you take a look at the WeatherWidgetViewModel you unit

tested in the earlier section, you can see that a serialization of the state

of the ValidForecastResultsInSuccessfulLoad test will result in the

following golden master being created:

{
 LoadWeatherCommand: {},
 IconUrl: https://openweathermap.org/img/wn/abc.png@2x.png,
 State: Loaded,
 Temperature: 18.0,
 Weather: Sunshine,
 Type: Weather
}

When this test is run, each time the serialized output of the

WeatherWidgetViewModel will be compared to the above golden master.

If any of the values are different from those in the golden master, the test

will fail.

�Snapshot Testing Your Application
In order to snapshot test your application, you will make use of the

excellent library called VerifyTests. VerifyTests has some really great

documentation and examples to get you started over at https://github.
com/VerifyTests/Verify.

You will additionally need to consume the Verify.Xunit NuGet

package. I have opted to create a separate project just to keep things

clearly separated for the purpose of this example. You can repeat the steps

in sections “Adding a Unit Test Project to Your Solution” and “Adding a

Reference to the Project to Test,” except that you will name the project

WidgetBoard.SnapshotTests.

Chapter 13 Testing

https://github.com/VerifyTests/Verify
https://github.com/VerifyTests/Verify

446

�Add the Verify.Xunit NuGet Package

•	 Right-click the “WidgetBoard.SnapshotTests” project in

Visual Studio.

•	 Select Manage NuGet Packages….

•	 Enter Verify.Xunit into the search bar.

•	 Select and install the package.

�Add a Reference to the WidgetBoard and WidgetBoard.
Tests Projects

You can add the reference as follows:

•	 Right-click the WidgetBoard.SnapshotTests project.

•	 Select Add ➤ Reference.

•	 Select Projects.

•	 Select WidgetBoard.

•	 Click Add.

Using VerifyTests, you can take a copy of your

WeatherWidgetViewModelTests class in the WidgetBoard.Tests project

and modify it to the following. The limited changes are shown in bold to

highlight the differences from the original.

[UsesVerify]
public class WeatherWidgetViewModelTests
{
 [Fact]
 �public async Task NullLocationResultsInPermission

ErrorState()

Chapter 13 Testing

447

 {
 var viewModel = new WeatherWidgetViewModel(
 �MockWeatherForecastService.ThatReturnsNoForecast(after:

TimeSpan.FromSeconds(5)),
 �MockSecureStorage.ThatContains("OpenWeatherApiToken",

"SomethingSecure"),
 �MockLocationService.ThatReturnsNoLocation(after:

TimeSpan.FromSeconds(2)));

 await viewModel.LoadWeatherForecast();

 await Verify(viewModel);
 }

 [Fact]
 public async Task NullForecastResultsInErrorState()
 {
 var viewModel = new WeatherWidgetViewModel(
 �MockWeatherForecastService.ThatReturnsNoForecast(after:

TimeSpan.FromSeconds(5)),
 �MockSecureStorage.ThatContains("OpenWeatherApiToken",

"SomethingSecure"),
 �MockLocationService.ThatReturns(new Location(0.0, 0.0),

after: TimeSpan.FromSeconds(2)));

 await viewModel.LoadWeatherForecast();

 await Verify(viewModel);
 }

 [Fact]
 public async Task ValidForecastResultsInSuccessfulLoad()
 {
 var weatherForecastService =

Chapter 13 Testing

448

 MockWeatherForecastService.ThatReturns(
 new Communications.Forecast
 {
 Main = new Communications.Main
 {
 Temperature = 18.0
 },
 Weather =
 [
 new Communications.Weather
 {
 Icon = "abc.png",
 Main = "Sunshine"
 }
]
 },
 after: TimeSpan.FromSeconds(5));

 var locationService = MockLocationService.ThatReturns(
 new Location(0.0, 0.0),
 after: TimeSpan.FromSeconds(2));

 var viewModel = new WeatherWidgetViewModel(
 weatherForecastService,
 �MockSecureStorage.ThatContains("OpenWeatherApiToken",

"SomethingSecure"),
 locationService);

 await viewModel.LoadWeatherForecast();

 await Verify(viewModel);
 }
}

Chapter 13 Testing

449

You remove the Assert statements and replace them by calling the

Verify method. In your original scenario, you were only asserting a small

number of things, but you can imagine that if the number of Assert

statements were to grow, then this single method call to Verify really does

reduce the complexity of your tests.

Brand-new tests will always fail until you accept the golden master.

There is tooling that can make this task easier, which is again provided by

the VerifyTests developers.

�Passing Thoughts
I end this snapshot testing section with the statement that it is not for

everyone. Some people really like the reduction in test case size, while

it verifies more than most typical unit tests by the sheer fact that it

verifies the whole object under test. As a counter argument, some people

dislike that the expected state or golden master is in a file separate to the

tests. I personally believe they provide great value, and I hope that this

introduction to snapshot testing will give you enough context to decide

whether it is going to be a good fit for you and your team, or at least give

you the desire to experiment with the concept.

�Summary
Now you have an overview of different testing techniques and the benefits

they bring. You may prefer snapshot testing over writing your own asserts.

I don’t mind either way so long as you do test your code. We have not

concluded all testing-related topics in this book; the next chapter covers

automation testing.

Chapter 13 Testing

450

In this chapter, you have

•	 Learned what testing is and why it is important

•	 Explored unit testing and how you can apply it to a

.NET MAUI application

•	 Learned about snapshot testing and how you can

implement it

•	 Explored what device tests are and how you can apply

them to your applications

In the next chapter, you will

•	 Learn what automation testing is

•	 Gain insight into Appium, an automation testing

framework

•	 Write automation tests that can interact with the widget

board application you have been building

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch13.

Chapter 13 Testing

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch13
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch13

451© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_14

CHAPTER 14

Automation Testing

�Abstract
The previous chapter covered a number of testing techniques to help prove

how small units of code “do what they say on the tin.” This chapter will

broaden the scope of what is being tested into what would be considered

integration or end-to-end testing. Furthermore, the focus of this chapter

will be to focus on performing this testing in an automated manner –

hence the title “Automation Testing.”

�What Is Automation Testing?
Automation testing is the process of using software to execute tests

against an application in order to verify that the application both meets

expectations and does so in a valid manner. One thing that a computer

is excellent at is following instructions in a repeated manner; this makes

automation testing a big advantage over manual testing due to the risk of a

human making a mistake (I know I certainly do).

I must add I don’t believe that automation testing will or should

replace manual testing entirely, but it can serve as an excellent platform

to save time and effort for the development/test team and allow them to

focus on what needs to be added next. It also provides time for the team

to perform more exploratory testing – this is the type of testing where you

https://doi.org/10.1007/979-8-8688-1189-0_14#DOI

452

don’t necessarily follow a script of steps and instead just pretend to be

a user or try to break things. Some great examples of exploratory testing

in my past personal projects involve giving my wordsearch app to my

then eight-year-old daughter and watch just how quickly she could do

something entirely unexpected and break things.

Speaking from personal experience, being an indie developer makes

it difficult enough to spend time building the application, let alone all of

the testing effort required to ensure that the application is stable and does

what I expect. I have found value in using automation test frameworks in

the past to allow myself to modify the application and allow a computer

to perform the testing that I have set up. In fact, it has caught some silly

mistakes that I have made from late night coding sessions trying to

get some new features shipped. I simply push the changes to the code

repository and go to bed, all while a computer will compile those changes,

deploy them, and then run my test suite against that new build. Great,

right? Good then let’s make this happen for our WidgetBoard application!

�Automation Testing in .NET MAUI
In order to perform automation testing against our .NET MAUI

application(s), we need to use a tool to perform the interaction with the

application. The tool that we will be using in this book is called Appium.

If you are not familiar with Appium, the following description from their

website explains it well:

“Appium is an open-source project and ecosystem

of related software, designed to facilitate UI

automation of many app platforms, including

mobile (iOS, Android, Tizen), browser (Chrome,

Firefox, Safari), desktop (macOS, Windows), TV

(Roku, tvOS, Android TV, Samsung), and more!”

Chapter 14 Automation Testing

453

We have already covered that .NET MAUI supports multiple platforms,

and thankfully all of the ones that it supports are also supported by

Appium, making it a great candidate for automation testing.

Appium works by having a server execute the tests on a client

application that runs on the target device. This means that running

the tests will require an Appium server to run. Appium then provides

drivers for each platform that you wish to test against. Let’s proceed to

following the steps to configure a testing environment to make this all

clearer.

�Installing Appium
The WidgetBoard application can run on Android, iOS, macOS, and

Windows.

�Installing Node.js

I mentioned earlier that Appium works by having a server execute the

tests; for this reason, we need to install Node.js. In order to install the

environment, you can follow the steps below:

	 1.	 Navigate to https://nodejs.org/.

	 2.	 Click Download Node.js.

	 3.	 Once downloaded, run the installer and follow

through to completion.

Note for the purpose of the examples in this book, you will need to

perform these steps on both your Windows and macOS machines. If you

are only working on one operating system, then that is of course fine.

Chapter 14 Automation Testing

https://nodejs.org/

454

�Install Appium

Now that you have Node.js installed, you should be able to open a terminal or

command prompt session on either macOS or Windows and install Appium

using node package manager (npm). Let’s take a look at each in turn.

�macOS

	 1.	 Open the Terminal application.

	 2.	 Enter the following command and then press return:

sudo npm install -g appium

�Windows

	 1.	 Open the Command Prompt application.

	 2.	 Enter the following command and then press return:

npm install -g appium

This will find the package called appium via node package manager,

and the -g argument will install it as a global tool. This means that you can

just type appium into a future terminal or command prompt session and

start an Appium server.

With Appium install, you can proceed to installing the relevant drivers

for each platform that you wish to test.

�Install Appium Driver for Android

The Android driver named UIAutomator2 can only be installed on macOS

or Windows, so open the Terminal or Command Prompt application, enter

the following command, and then press return:

 appium driver install uiautomator2

Chapter 14 Automation Testing

455

The installation should complete and report the following:

✔ Checking if 'appium-uiautomator2-driver' is compatible
✔ Installing 'uiautomator2' using NPM install spec 'appium-
uiautomator2-driver'
ℹ Driver uiautomator2@3.8.1 successfully installed
- automationName: UiAutomator2
- platformNames: ["Android"]

�Install Appium Driver for iOS

The iOS driver named XCUITest can only be installed on macOS, so

open the Terminal application, enter the following command, and then

press return:

 appium driver install xcuitest

The installation should complete and report the following:

✔ Checking if 'appium-xcuitest-driver' is compatible
✔ Installing 'xcuitest' using NPM install spec 'appium-
xcuitest-driver'
ℹ Driver xcuitest@7.28.3 successfully installed
- automationName: XCUITest
- platformNames: ["iOS","tvOS"]

�Install Appium Driver for macOS

The macOS driver named Mac2 can only be installed on macOS, so

open the Terminal application, enter the following command, and then

press return:

 appium driver install mac2

Chapter 14 Automation Testing

456

The installation should complete and report the following:

✔ Checking if 'appium-mac2-driver' is compatible
✔ Installing 'mac2' using NPM install spec 'appium-
mac2-driver'
ℹ Driver mac2@1.20.2 successfully installed
- automationName: Mac2
- platformNames: ["Mac"]

�Install Appium Driver for Windows

The Windows driver named Windows can only be installed on Windows,

so open the Command Prompt application, enter the following command,

and then press return:

 appium driver install windows

The installation should complete and report the following:

✔ Checking if 'appium-windows-driver' is compatible
✔ Installing 'windows' using NPM install spec 'appium-
windows-driver'
ℹ Driver windows@3.0.2 successfully installed
- automationName: Windows
- platformNames: ["Windows"]

�Install and Run WinAppDriver

An additional prerequisite is required to run Appium on Windows, and

that is to install WinAppDriver. The project repository is available at

https://github.com/microsoft/WinAppDriver, and the steps to follow

are as follows:

Chapter 14 Automation Testing

https://github.com/microsoft/WinAppDriver

457

	 1.	 Download Windows Application Driver installer

version 1.2.1 from https://github.com/Microsoft/
WinAppDriver/releases.

	 2.	 Run the installer on a Windows 10 or 11 machine

where your application under test is installed and

will be tested.

	 3.	 Enable Developer Mode in Windows settings.

	 4.	 Run WinAppDriver.exe from the installation

directory (e.g., C:\Program Files (x86)\Windows

Application Driver).

Windows Application Driver will then be running on the test machine

listening to requests on the default IP address and port (127.0.0.1:4723).

This will be fine for the purpose of our testing, but you do have the ability

to configure the address and port should you wish.

This concludes the driver installation; now let’s take a quick look at a

very useful tool and then move onto writing some tests.

�Install Appium Inspector

This tool is a must! I owe a big shout-out to my good friend and the

reviewer of this book, Gerald, for introducing me to this tool when I was

facing some pain trying to correctly identify parts of the application to test.

Figure 14-1 shows the Appium inspector and how it can be configured to

start an iOS session.

Chapter 14 Automation Testing

https://github.com/Microsoft/WinAppDriver/releases
https://github.com/Microsoft/WinAppDriver/releases
https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development

458

Figure 14-1.  The Appium inspector application, configured to
connect to the iOS version of the application

The inspector application makes it possible to interact and inspect the

application being targeted. Figure 14-2 shows the inspector with the Add

button selected from the BoardListPage and the properties available for

inspection and verification in our tests.

Chapter 14 Automation Testing

459

Figure 14-2.  The Appium inspector application showing available
information for the Add button

This concludes the steps on how to install Appium and all of its

dependencies, so let’s now proceed to creating our test project and tests.

�Creating the Automation Test Project
One key detail to highlight is that Appium does not provide the mechanism

to execute tests; it purely acts as the mechanism to interact with an

application. In order to write and execute tests, we will need to make

use of a unit testing framework. We made use of xUnit in the previous

chapter, and while I would strongly recommend consistency when using

frameworks like this, I wanted to give you exposure to a second test

framework to help you decide which might be the right framework for

you and your team. In this chapter, we will be making use of NUnit. Let’s

proceed to creating the project and then make use of Appium.

Chapter 14 Automation Testing

460

You will need to add a new project to the WidgetBoard solution.

Most public samples at the time of writing make use of a large number of

projects – one shared project and then one project per platform under test.

I have opted for a single project with the aim of reducing the complexity

while providing more flexibility in terms of how to drive tests on not just

multiple platforms but also multiple devices on each platform. Let’s create

the project and then work through how it will all fit together.

	 1.	 Click the File menu.

	 2.	 Click Add.

	 3.	 Click New Project.

	 4.	 Enter Test in the Search for templates box.

	 5.	 Select NUnit Test Project.

	 6.	 Click Next.

	 7.	 Enter a name for the project. I opted for

WidgetBoard.AutomationTests.

	 8.	 Click Next.

	 9.	 Select the framework. The default should be fine;

just make sure it matches the target version of the

.NET MAUI application project.

	 10.	 Click Create.

One key detail to note is that this new project does not target each of

the platforms (e.g., net9.0-ios); it just targets plain .NET (net9.0). This is

due to the fact that it is “just” a test project; you can and will make use

of the dotnet test command-line option to run these tests. What will

happen is during the execution of a test, the code will interact with an

application running on the target under test (e.g., iOS) and verify that it

behaves as expected.

Chapter 14 Automation Testing

461

I mentioned that this book is doing things a little bit differently to most

public samples. I don’t want to take away from the work of these samples.

If you are happy to follow this approach, then I should highlight that my

good friend Gerald and the reviewer of this book has created a template

to make the steps that you just followed a lot simpler. You can check the

details out for this at https://github.com/jfversluis/Template.Maui.
UITesting.

Now that you have created the project, you will proceed to introduce

some helper implementations to initialize the Appium layer so that the

tests can interact with the application on each target platform.

�Add the Appium NuGet Package
You can do this by following these steps:

•	 Right-click the WidgetBoard project.

•	 Click Manage NuGet Packages.

•	 In the Search field, enter Appium.WebDriver.

•	 Select the Appium.WebDriver package and select Add
Package.

•	 A confirmation dialog will show. Review and accept the

license details if you are happy.

�Creating an Appium Server
I explained earlier that Appium uses a server to execute the interaction

with the application under test; therefore, you will need to add some code

to start an Appium server instance on your machine. In order to achieve

this, you can create an instance of the AppiumLocalService, configure it to

Chapter 14 Automation Testing

https://github.com/jfversluis/Template.Maui.UITesting
https://github.com/jfversluis/Template.Maui.UITesting

462

the address and port the server is running on, and then start it. Let’s create

a new class file, call it AppiumServerHelper, and then modify its contents

to the following:

using OpenQA.Selenium.Appium.Service;

namespace WidgetBoard.AutomationTests;

public static class AppiumServerHelper
{
 private static AppiumLocalService? appiumLocalService;

 private const string DefaultHostAddress = "127.0.0.1";
 private const int DefaultHostPort = 4723;

 public static void StartAppiumLocalServer(
 string host = DefaultHostAddress,
 int port = DefaultHostPort)
 {
 if (appiumLocalService is not null)
 {
 return;
 }

 var builder = new AppiumServiceBuilder()
 .WithIPAddress(host)
 .UsingPort(port);

 // Start the server with the builder
 appiumLocalService = builder.Build();
 appiumLocalService.Start();
 }

Chapter 14 Automation Testing

463

 public static void DisposeAppiumLocalServer()
 {
 appiumLocalService?.Dispose();
 }
}

The code that you just added will build a service to connect to a default

address of 127.0.0.1 and port of 4723. For the examples in this book,

the default values are fine, but if you opt for using different values in your

Appium server, then remember to update these.

Now that you have the code to start the server, the next step is to create

a driver instance for the platform being tested. Let’s proceed to doing

this now.

�Creating the Appium Platform Drivers
The first step of this section will be to create the bootstrapping code for

the tests that will be run; then you will add each platform-specific driver

implementation separately. The bootstrapping and teardown will make

use of the SetUpFixture, OneTimeSetup, and OneTimeTearDown attributes

that are provided by NUnit. These enable you to define a method that will

be executed once per test assembly before the tests begin and also one

when the tests finish. This is perfect for the scenario of starting the Appium

server and then stopping it respectively.

Let’s add a new class file, call it AppiumSetup, and then replace the

contents with the following:

using NUnit.Framework;
using OpenQA.Selenium.Appium;
using OpenQA.Selenium.Appium.Android;
using OpenQA.Selenium.Appium.Enums;
using OpenQA.Selenium.Appium.iOS;

Chapter 14 Automation Testing

464

using OpenQA.Selenium.Appium.Mac;
using OpenQA.Selenium.Appium.Windows;

namespace WidgetBoard.AutomationTests;

[SetUpFixture]
public class AppiumSetup
{
 private static AppiumDriver? driver;

 �public static AppiumDriver App => driver ?? throw new NullR
eferenceException("AppiumDriver is null");

 [OneTimeSetUp]
 public void RunBeforeAnyTests()
 {
 AppiumServerHelper.StartAppiumLocalServer();

 driver = CreateDriver();
 }

 private static AppiumDriver CreateDriver()
 {
 �var platformName = TestContext.

Parameters["platformName"];

 switch (platformName)
 {
 case "Android":

 case "iOS":

 case "Mac":

 case "Windows":
 }

Chapter 14 Automation Testing

465

 return null;
 }

 [OneTimeTearDown]
 public void RunAfterAllTests()
 {
 driver?.Quit();

 �// If an Appium server was started locally above, make
sure we clean it up here

 AppiumServerHelper.DisposeAppiumLocalServer();
 }
}

The CreateDriver method makes use of the TestContext.Parameters

property; this makes it possible to parameterize a full suite of tests; this

is especially useful when wanting to repeat the same tests on multiple

different devices for the same platform. Trust me when I say that the vast

number of Android manufacturers and devices means that being able

to do this in an automated manner can really help to pinpoint where

issues might lie! The values in TestContext.Parameters are populated

through a .runsettings file that is passed to the test runner when the

unit tests are executed. As you build the driver code, you will see more

use of the TestContext.Parameters property; once the driver code has

been introduced to the code base, we will then look to create each of the

.runsettings files for each platform.

The RunBeforeAnyTests and RunAfterAllTests methods make use

of the AppiumServerHelper class that you introduced in the previous

section. They also make use of the driver field which should be populated

from the CreateDriver method; this leads us nicely onto creating each

platform-specific driver.

Chapter 14 Automation Testing

466

�Creating the Android Driver

The Android driver can take a number of different values based on

whether you are testing a release or a debug build of the application; this

book focuses on testing a release build as that is a more likely scenario, but

the code in the sample repository for this book also includes the required

code to test against a debug build. Inside the switch statement in the

CreateDriver method, we can add the following changes inside the case
"Android": section:

case "Android":
 var androidOptions = new AppiumOptions
 {
 AutomationName = "UIAutomator2",
 PlatformName = platformName,
 App = TestContext.Parameters["app"]
 };

 return new AndroidDriver(androidOptions);

You may have wondered why I included the console results for each

platform in order to show that each driver had been installed successfully;

if you look back now, you should notice that the PlatformName and

AutomationName entries match those reported in the console results.

Note if you wish to run your tests on an Android Virtual Device (AVD)

or emulator, then you need to supply an additional option avd. This option

can be added via the AddAdditionalAppiumOption called avd; if you

supply this, it will boot an Android emulator up that matches the name

supplied, for example:

androidOptions.AddAdditionalAppiumOption("avd", "pixel_5_-_
api_33");

Chapter 14 Automation Testing

467

You did not supply this in your code, so in order to test your

application, you must make sure that the Android emulator is booted

manually.

�Creating the iOS Driver

The iOS driver initialization is the main reason why I have opted to make

use of the “runsettings” configuration file for unit tests. You haven’t created

any runsettings files; don’t worry, these will follow along after creating the

code to instantiate the platform drivers.

Inside the switch statement in the CreateDriver method, we can add

the following changes inside the case "iOS": section:

case "iOS":
 var iOSOptions = new AppiumOptions
 {
 AutomationName = "XCUITest",
 PlatformName = platformName,
 �PlatformVersion = TestContext.

Parameters["platformVersion"],
 DeviceName = TestContext.Parameters["deviceName"]
 App = TestContext.Parameters["app"]
 };

 return new IOSDriver(iOSOptions);

Note that the value for App can be the full path to the .app file to test or

the bundle ID if the app is already installed on the device.

�Creating the macOS Driver

Inside the switch statement in the CreateDriver method, we can add the

following changes inside the case "Mac": section:

Chapter 14 Automation Testing

468

case "Mac":
 var macOSOptions = new AppiumOptions
 {
 AutomationName = "mac2",
 PlatformName = platformName,
 App = TestContext.Parameters["app"]
 };

 return new MacDriver(macOSOptions);

Note that the value for App can be the full path to the .app file to test or

the bundle ID if the app is already installed on the device.

�Creating the Windows Driver

Inside the switch statement in the CreateDriver method, we can add the

following changes inside the case "Windows": section:

case "Windows":
 var windowsOptions = new AppiumOptions
 {
 AutomationName = "windows",
 PlatformName = platformName,
 App = TestContext.Parameters["app"]
 };

 return new WindowsDriver(windowsOptions);

Note that the value for App needs to be the identifier of the deployed

application. Therefore, the application must be deployed before testing.

This concludes the changes required to instantiate an Appium

driver on each of the target platforms; let’s proceed to looking at the

configuration files required for each platform and then actually write

some tests.

Chapter 14 Automation Testing

469

�Parameterizing the Tests
I have explained why we are parameterizing the tests. I should make it

clear that this level of parameterizing tests is for the whole suite – basically

all tests in this assembly. We will look at a further example of how to

parameterize an individual test to make it possible to keep the amount

of code required down to a minimum. The parameters for the test suite

are through a .runsettings file; this is an XML file that can contain a set of

parameters that a test can access.

�Configuration for Android

The Android configuration can be added by adding a new file to the

project. Call the file android.runsettings and then modify the contents to

match the following:

<?xml version="1.0" encoding="utf-8"?>
<RunSettings>
 <TestRunParameters>
 <Parameter name="platformName" value="Android" />
 �<Parameter name="app" value="<OUTPUT_DIRECTORY_PATH>

/com.companyname.widgetboard-Signed.apk" />
 </TestRunParameters>
</RunSettings>

�Configuration for iOS

The iOS configuration can be added by adding a new file to the project.

Call the file iphone-15pro-17.5.runsettings and then modify the contents to

match the following:

Chapter 14 Automation Testing

470

<?xml version="1.0" encoding="utf-8"?>
<RunSettings>
 <TestRunParameters>
 <Parameter name="platformName" value="iOS" />
 <Parameter name="platformVersion" value="17.5" />
 <Parameter name="deviceName" value="iPhone 15 Pro" />
 �<Parameter name="app" value="com.companyname.

widgetboard" />
 </TestRunParameters>
</RunSettings>

Hopefully the file name alone will start to give the impression of

how we can customize the test run; we could easily introduce a second

.runsettings file to support testing the application running on an iPad Pro

13 inch or another iPhone variant. This means that all of the same tests can

be executed against different devices without any code changes.

�Configuration for macOS

The macOS configuration can be added by adding a new file to the project.

Call the file macos.runsettings and then modify the contents to match the

following:

<?xml version="1.0" encoding="utf-8"?>
<RunSettings>
 <TestRunParameters>
 <Parameter name="platformName" value="Mac" />
 �<Parameter name="app" value="com.companyname.

widgetboard" />
 </TestRunParameters>
</RunSettings>

Chapter 14 Automation Testing

471

�Configuration for Windows

The Windows configuration can be added by adding a new file to the

project. Call the file windows.runsettings and then modify the contents to

match the following:

<?xml version="1.0" encoding="utf-8"?>
<RunSettings>
 <TestRunParameters>
 <Parameter name="platformName" value="Windows" />
 �<Parameter name="app" value="com.companyname.

widgetboard_9zz4h110yvjzm!App" />
 </TestRunParameters>
</RunSettings>

�Configuring Visual Studio to Use a runsettings File

In Visual Studio, it is possible to select a runsettings file that will be used

for test executions. You can follow these steps below:

–– Select Test.

–– Select Configure Run Settings.

–– Select Select Solution Wide runsettings File, and then

select a .runsettings file that you created above.

This will then result in test runs within Visual Studio using that file.

�Running Tests from Command Line/Terminal

There currently aren’t any tests that exist in our test project but given we

have discussed the .runsettings file we can run the following command

dotnet test WidgetBoard.AutomationTests --settings
iphone-15pro-17.5.runsettings

Chapter 14 Automation Testing

472

The above command makes it possible to include this in your CI/CD

processes in order to automatically execute the automation tests.

�Writing the Automation Tests
This chapter has most likely felt pretty heavy up until this point without

having anything to really show for it. I do apologize for that, but sadly

there is a fair amount of setup required to first get our environment ready

and also some prerequisite information required for the approach taken.

This section will now provide concrete examples of how to interact with a

.NET MAUI application and use those interactions to verify the application

behaves as expected.

The tests that will be created in this section will be against

the BoardListPage, BoardDetailsPage, and FixedBoardPage

implementations. This detail is especially important because we need to

make sure that it is possible to interact with the controls on those pages.

In order to make this task possible, you will want to make use of the

AutomationId property that exists on .NET MAUI controls.

The AutomationId property provides developers with a mechanism

to expose a unique identifier on controls to make it possible to uniquely

identify them in the visual tree when automating UI. There will be

times when an AutomationId is not possible, for example, if you are

using a third-party control that hasn’t added AutomationIds into their

implementation. Don’t worry, the final test that will be created will show

how to use XPaths to work around this.

Let’s proceed to creating a new class file in the WidgetBoard.

AutomationTests project, call it BoardTests.cs, and modify it to have the

following contents:

using NUnit.Framework;
using OpenQA.Selenium;
using OpenQA.Selenium.Appium;

Chapter 14 Automation Testing

473

using OpenQA.Selenium.Appium.Windows;

namespace WidgetBoard.AutomationTests;

public class BoardTests
{
 private AppiumDriver App => AppiumSetup.App;

 �// This could also be an extension method to AppiumDriver
if you prefer

 private AppiumElement FindUIElement(string id)
 {
 if (App is WindowsDriver)
 {
 �return App.FindElement(MobileBy.

AccessibilityId(id));
 }

 return App.FindElement(MobileBy.Id(id));
 }
}

The code added makes use of the prerequisite driver implementation

that you added a short while ago and also introduces the FindUIElement

method; this method is purely to deal with how Windows behaves slightly

differently to the other platforms.

�Testing the Add New Board Button
The entry point to the application is to show a blank list of boards; at the

top of the screen is a button that will allow the user to create a new board.

Inside the BoardTests.cs file, add the following method:

Chapter 14 Automation Testing

474

[Test, Order(1)]
public void SaveButtonIsDisabledByDefault()
{
 FindUIElement("AddBoardButton").Click();

 var saveButton = FindUIElement("SaveButton");

 Assert.That(saveButton.Enabled, Is.False);

 FindUIElement("Cancel").Click();
}

This method doesn’t just test that the add button works, it does a

number of other things; let’s break it down line by line to understand it in

more detail.

[Test, Order(1)]

The above states that the method is a test in the NUnit framework and

that it will be the first test to be executed.

 FindUIElement("AddBoardButton").Click();

We will make use of the new method we added a short while ago; it will

attempt to find a UI element with the AutomationId of "AddBoardButton"

and then interact with it. I use the word “interact” because on a mobile

platform, there isn’t really a click interaction but a touch interaction. If

Appium cannot find the UI element, an exception will be thrown stating it

couldn’t find it; this works as an implicit assertion because the test will fail

and it will fail with a useful error message.

The result of the Click method call will result in the BoardDetailsPage

being presented to the user in the application.

 var saveButton = FindUIElement("SaveButton");

Chapter 14 Automation Testing

475

The above will attempt to find a UI element with the AutomationId of

"SaveButton".

 Assert.That(saveButton.Enabled, Is.False);

The above line will verify that the save button is currently disabled; this

is down to the application requiring a name to be provided for the board.

This test would then catch a regression if a developer accidentally turned

off that rule.

 FindUIElement("Cancel").Click();

This final step is not really part of the test, but it resets the state of

the application by navigating back to the BoardListPage. Some test

enthusiasts might highlight how tests should not rely on or affect the

outcome of other tests, and in the majority of scenarios, I would agree. In

this scenario, however, I believe there is value in testing each individual

unit of functionality but also testing them in combination to prove that

the units integrate with each other. Plus sometimes you need data in your

application to test specific scenarios and what better way to create the data

than through automation?

The test made use of AutomationIds which the application code does

not currently support; let’s add in the ones to support this test; open

the BoardListPage.xaml file and modify the ToolbarItem to match the

following (changes in bold):

<ContentPage.ToolbarItems>
 <ToolbarItem
 Text="Add"
 AutomationId="AddBoardButton"
 Command="{Binding AddBoardCommand}" />
</ContentPage.ToolbarItems>

Chapter 14 Automation Testing

476

You should notice how the AutomationId you just added matches that

used in the test. You will additionally need to modify the BoardDetailsPage.

xaml file to introduce two further AutomationIds; make the following

changes in bold:

<Grid ColumnDefinitions="*,*,*">
 <Button
 Text="Cancel"
 Command="{Binding CancelCommand}"
 AutomationId="CancelButton" />

 <Button
 Text="Save"
 Grid.Column="2"
 Command="{Binding SaveCommand}"
 AutomationId="SaveButton" />
</Grid>

This makes it possible to assert that the save button is disabled and

then to interact with the cancel button.

�Adding a Test to Create Boards
At times you might want to execute the steps in a test multiple times to

work through different scenarios or in our case create multiple sets of data.

It is extremely valuable to run these as separate tests because it means if

one scenario fails, it won’t impact another scenario that follows, and we

can do this without having to copy and paste tests around. The TestCase

attribute provided by NUnit allows you to define data values that will be

passed into a test as parameters, and the test will be executed for each

TestCase attribute added. Let’s see this in action by creating a test that will

execute two times and result in creating two differently named boards. You

can add the following code into the BoardTests.cs file:

Chapter 14 Automation Testing

477

[Order(2)]
[TestCase("Work", 4, 4)]
[TestCase("Family", 2, 2)]
public void CanSaveBoard(string boardName, int numberOfColumns,
int numberOfRows)
{
 FindUIElement("AddBoardButton").Click();

 FindUIElement("BoardNameEntry").SendKeys(boardName);
 �FindUIElement("NumberOfColumnsEntry").

SendKeys(numberOfColumns.ToString());
 �FindUIElement("NumberOfRowsEntry").SendKeys(numberOfRows.

ToString());

 var saveButton = FindUIElement("SaveButton");

 Assert.That(saveButton.Enabled, Is.True);
 saveButton.Click();

 var createdBoard = FindUIElement(boardName);

 Assert.That(createdBoard, Is.Not.Null);
 Assert.That(createdBoard.Displayed, Is.True);
}

I won’t break down each line this time as a fair amount should feel

familiar; I will highlight the new concepts though. As I mentioned, this test

will be executed twice: once with a boardName of "Work" and once with a

boardName of "Family".

 FindUIElement("BoardNameEntry").SendKeys(boardName);

This will result in the value inside the boardName parameter being

entered into the entry field with AutomationId of BoardEntryName.

Chapter 14 Automation Testing

478

 var createdBoard = FindUIElement(boardName);

 Assert.That(createdBoard, Is.Not.Null);
 Assert.That(createdBoard.Displayed, Is.True);

The three lines above are called after the save happens; this is

important to highlight because it means that the application will have

navigated back to the BoardListPage. These lines above will find the Label

inside the CollectionView with AutomationId of the board name and then

verify that it is visible to the user through the Displayed property. This is

something I wanted to highlight because the properties available in the

Appium layer are designed to be platform agnostic and therefore do not

directly match the .NET MAUI property names.

�Adding a Test to Interact with a CollectionView
The final test that you will be adding in this chapter shows how to make

use of the XPath lookup rather than by AutomationId; it also shows how

you can select an item in a CollectionView once found in order to mimic

the user selecting a board to view. You can add the following code to the

BoardTests.cs file:

[Test, Order(3)]
public void CanSelectEntryInListOfBoards()
{
App.FindElement(By.XPath("//XCUIElementTypeStaticText[
@name='Work']")).Click();

 var grid = FindUIElement("BoardGrid");

 Assert.That(grid, Is.Not.Null);
 Assert.That(grid.Displayed, Is.True);
}

Chapter 14 Automation Testing

479

The only new concept is the use of the By.XPath method; this is a

helper method provided by Appium to perform a lookup by XPath. I won’t

be digging any further into XPath or the complicated scenarios you can

build using it, but hopefully the above example shows how you can build

a relatively straightforward lookup. The code above looks for an element

of type XCUIElementTypeStaticText which has the name of ‘Work’. It is

worth noting that lookups by XPath typically perform worse than using the

AutomationId; in our scenario, we could use the AutomationId, but this

example was just to show how you could build it another way.

Now that you have some insight into how you can instruct Appium

to discover and select elements within your application’s visual tree, I

would like to highlight another library that can help to simplify the code

that you need to write. This library is available at https://github.com/
jfversluis/Plugin.Maui.UITestHelpers.

This now concludes the chapter on automation testing and testing in

general in the book. If you were to run the tests inside your IDE or using

the command-line tooling, you should be able to observe the application

being tested under automation.

�Summary
Now you have an overview of automation testing, the required effort to

set up a system to support it through Appium, and some techniques to

use when writing automation tests. I really hope this chapter has been

as enjoyable learning about the options as it has been to expose them.

It really is impressive what you can automate through a framework

like Appium!

Chapter 14 Automation Testing

https://github.com/jfversluis/Plugin.Maui.UITestHelpers
https://github.com/jfversluis/Plugin.Maui.UITestHelpers

480

In this chapter, you

•	 Learned what automation testing is

•	 Gained insight into Appium, an automation testing

framework

•	 Wrote automation tests that can interact with the

widget board application you have been building

In the next chapter, you will

•	 Learn what .NET MAUI Graphics is

•	 Gain an insight into some of the power provided by

.NET MAUI Graphics

•	 Build your own sketch widget with the .NET MAUI

GraphicsView control

•	 Further enhance the WidgetBoard application by

adding a graphical element to the clock widget

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch14.

Chapter 14 Automation Testing

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch14
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch14

481© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_15

CHAPTER 15

Let’s Get Graphical

�Abstract
In this chapter, you will learn what .NET MAUI Graphics is, how it can

be used, and some practical examples of why you would want to use it.

You will also gain insight into some of the power provided by .NET MAUI

Graphics and how you can use it to build your own sketch widget with the

.NET MAUI GraphicsView control.

�.NET MAUI Graphics
.NET MAUI Graphics is another one of my favorite topics! I am currently

exploring the idea of building a game engine on top of it given the amount

of power it already offers. If you are interested in the game engine, please

feel free to check out the repository on GitHub at https://github.com/
bijington/orbit.

It has the potential to offer the ability for so much to be achieved,

things like rendering chart controls or other fancy concepts all through a

cross-platform API, meaning you only really need to focus on the problems

you are trying to solve and not worry about each individual platform.

https://doi.org/10.1007/979-8-8688-1189-0_15#DOI
https://github.com/bijington/orbit
https://github.com/bijington/orbit

482

Essentially .NET MAUI Graphics offers a surface that can render pixel-

perfect graphics on any platform supported by .NET MAUI. Consider .NET

MAUI Graphics as an abstraction layer, like .NET MAUI itself, on top of

the platform-specific drawing libraries. So we get all the power of each

platform but with a simple unified .NET API that we as developers can

work with.

�Drawing on the Screen
.NET MAUI provides GraphicsView, which you can use to draw shapes on

the screen. You need to assign the Drawable property on GraphicsView

with an implementation that knows how to draw. This implementation

must implement the IDrawable interface that defines a Draw method.

�Updating the Surface

In order to trigger the application or GraphicsView to update what

is rendered on screen, you must call the Invalidate method on

GraphicsView. This will then cause the IDrawable.Draw method to be

invoked, and your code will be given the chance to update the canvas.

The way to interact with the ICanvas implementation is to first

set the values you need such as fill color (FillColor) or stroke color

(StrokeColor) and then call the draw method you are interested in

(FillSquare() or DrawSquare(), respectively).

Let’s look at some basic examples to get a better understanding of how

to use the graphics layer.

�Drawing a Line

Inside the Draw method, you can interact with the ICanvas to draw a line

using the DrawLine method. The following code shows how this can be

achieved:

Chapter 15 Let’s Get Graphical

483

public void Draw(ICanvas canvas, RectF dirtyRect)
{
 canvas.StrokeColor = Colors.Red;
 canvas.StrokeSize = 6;
 canvas.DrawLine(0, 20, 100, 50);
}

You set StrokeColor and StrokeSize before calling the DrawLine

method. Order is important, and you must set these properties before you

draw. Figure 15-1 shows the result of the Draw method from above.

Figure 15-1.  Drawing a line in .NET MAUI Graphics

In addition to drawing lines, you can draw many different shapes such

as ellipse, rectangle, rounded rectangle, and arc. You can draw even more

complex shapes through paths.

�Drawing a Path

Paths are not to be confused with the Shapes API provided with .NET

MAUI. Paths in .NET MAUI Graphics enable you to build up a set of

coordinates in order to draw a more complex shape.

public void Draw(ICanvas canvas, RectF dirtyRect)
{
 PathF path = new PathF();
 path.MoveTo(40, 10);
 path.LineTo(70, 80);
 path.LineTo(10, 50);
 path.Close();

Chapter 15 Let’s Get Graphical

484

 canvas.StrokeColor = Colors.Red;
 canvas.StrokeSize = 6;
 canvas.DrawPath(path);
}

You first build up a PathF through the MoveTo, LineTo, and Close

methods. The MoveTo method moves the current location of the path to the

specified coordinates, and then the LineTo method draws a line from the

current location that you just set in MoveTo to the coordinates specified in

the LineTo method call. Finally, the Close method allows you to close the

path. This means that the final location will have a line added back to the

starting location. Notice that you didn’t explicitly add a LineTo(40, 10)

method call in; Close does this for you. Then you set the StrokeColor and

StrokeSize before calling the DrawPath method. Figure 15-2 shows the

result of the Draw method from above.

Figure 15-2.  Drawing a path in .NET MAUI Graphics

It is this DrawPath method that you will be utilizing in the new widget

you will be building as part of this chapter.

�Maintaining the State of the Canvas

There can be times when you want to preserve some of the settings

that you apply to the canvas, such as properties like StrokeColor and

FillColor. All properties related to Stroke and Fill, plus others like

transformation properties, can be preserved. This can be done through

the SaveState method, which will save the current state. This saved state

can then be restored through the RestoreState method. It is also possible

Chapter 15 Let’s Get Graphical

485

to reset the current graphics state back to the default values with the

ResetState method. These three methods can provide a large amount

of functionality in specific scenarios. Say you have implemented a chart

rendering control where the chart is rendered and then each individual

series is rendered separately. You want to preserve the state of the chart’s

graphics settings but wish to reset each time you render a series (e.g., each

column in a bar chart).

�Further Reading
You have only scratched the surface of what is possible with the .NET

MAUI Graphics layer. I strongly recommend that you refer to the Microsoft

documentation at https://learn.microsoft.com/dotnet/maui/user-
interface/graphics/ where it shows much more complex scenarios such

as painting patterns, gradients, images, rendering text, and much more.

�Building a Sketch Widget
My daughters love to doodle and leave me little notes when I am away

from my desk, so I thought why not give them the ability to draw digital

sketches and help save some trees. Let’s create a new widget and then

piece together this new drawing mechanic.

�Creating the SketchWidgetViewModel
As with all of the widgets, you want to create a view model to accompany

the view. Let’s add a new class file into the ViewModels folder and call it

SketchWidgetViewModel.cs. Modify it with the following contents:

Chapter 15 Let’s Get Graphical

https://learn.microsoft.com/dotnet/maui/user-interface/graphics/
https://learn.microsoft.com/dotnet/maui/user-interface/graphics/

486

namespace WidgetBoard.ViewModels;

public class SketchWidgetViewModel : IWidgetViewModel
{
 public const string DisplayName = "Sketch";
 public int Position { get; set; }
 public string Type => DisplayName;
}

The view model is relatively simple as it only really needs to implement

the basics of the IWidgetViewModel interface. If you decide to add more

functionality into your widget, you have the infrastructure in place to do so.

Let’s now deal with the view and user interaction.

�Representing a User Interaction
When a user interacts with the new widget, they will be drawing on the

screen. You will need to record this interaction so that it can be rendered

inside the Draw method that the SketchWidgetView implements through

the IDrawable interface. Add a new class file, call it DrawingPath.cs in the

root of the project, and modify it to have the following contents:

public class DrawingPath
{
 public DrawingPath(Color color, float thickness)
 {
 Color = color;
 Thickness = thickness;
 Path = new PathF();
 }
 public Color Color { get; }

Chapter 15 Let’s Get Graphical

487

 public PathF Path { get; }
 public float Thickness { get; }
 public void Add(PointF point) => Path.LineTo(point);
}

The class has three main properties:

•	 Color represents the color of the line being drawn.

•	 Thickness represents how thick the line is.

•	 Path contains the points that make up the line.

You also have a single method that adds a new point into the Path

property. This ties in well with the .NET MAUI Graphics layer as you

receive the point when the user interacts with the surface and then you can

also use the same type to render the line on the screen.

Let’s create the widget view that will make use of this class.

�Creating the SketchWidgetView
As with each of the widget views, you will be creating a XAML-based view.

It will be inside the view where most of the logic resides because this

widget is largely view related.

Add a new .NET MAUI ContentView (XAML) to your Views folder and

call it SketchWidgetView.

�Modifying the SketchWidgetView.xaml

The contents of the SketchWidgetView.xaml file should be modified to

the following. Remember that you want to keep your visual tree as simple

as possible. You only need to declare the GraphicsView itself and no other

container controls.

Chapter 15 Let’s Get Graphical

488

<?xml version="1.0" encoding="utf-8" ?>
<GraphicsView
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="WidgetBoard.Views.SketchWidgetView"
 StartInteraction="OnGraphicsViewStartInteraction"
 DragInteraction="OnGraphicsViewDragInteraction"
 EndInteraction="OnGraphicsViewEndInteraction" />

The GraphicsView provides several events that you can subscribe to

in order to handle the user’s interaction with the surface. You are only

interested in the following:

•	 StartInteraction: This is when the user first interacts,

so basically when the first touch/mouse click happens.

•	 DragInteraction: This follows from the start and

involves the touch/mouse moving around on the

surface.

•	 EndInteraction: This is when the user lifts their finger

from the screen or mouse button.

When you add these events in the XAML file, it will automatically

create some C# code in the SketchWidgetView.xaml.cs file that you will

expand on shortly.

�Modifying the SketchWidgetView.xaml.cs

Visual Studio will have created this file for you already, so you need to

open it and modify it to the following.

Note that the types in the event handlers have been shortened (e.g.,

from System.Object to object). This is mainly to make it clearer to read.

Chapter 15 Let’s Get Graphical

489

using Microsoft.Maui.Controls;
using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

public partial class SketchWidgetView : GraphicsView,
IWidgetView, IDrawable
{
 public SketchWidgetView()
 {
 InitializeComponent();
 this.Drawable = this;
 }

 public IWidgetViewModel WidgetViewModel
 {
 get => (IWidgetViewModel)BindingContext;
 set => BindingContext = value;
 }

 �private void OnGraphicsViewStartInteraction(object sender,
TouchEventArgs e)

 {
 }

 �private void OnGraphicsViewDragInteraction(object sender,
TouchEventArgs e)

 {
 }

 �private void OnGraphicsViewEndInteraction(object sender,
TouchEventArgs e)

 {
 }

Chapter 15 Let’s Get Graphical

490

 public void Draw(ICanvas canvas, RectF dirtyRect)
 {
 throw new NotImplementedException();
 }
}

Each of the event handles and the Draw method have the blank or

default implementation. Let’s build this file up slowly and discuss the key

parts as you do so.

First, you need to add the backing fields to store the interactions from

the user.

private DrawingPath? currentPath;
private readonly IList<DrawingPath> paths = new
List<DrawingPath>();

The first event handler to modify is for the StartInteraction event.

private void OnGraphicsViewStartInteraction(object sender,
TouchEventArgs e)
{
 currentPath = new DrawingPath(Colors.Black, 2);
 currentPath.Add(e.Touches.First());
 paths.Add(currentPath);
 Invalidate();
}

In this method, you first create a new instance of the DrawingPath

class, assigning a color and thickness. They can, of course, be expanded

to allow selections from the user so they can have custom colors. Next,

you add the first touch into the current path so you have your first point

of interaction. Then you add the current path to the list of all paths so that

they can eventually be rendered on screen. Finally, you call Invalidate,

which will trigger the Draw method to be called, and the paths can

be drawn.

Chapter 15 Let’s Get Graphical

491

The next event handler to modify is for the DragInteraction event.

private void OnGraphicsViewDragInteraction(object sender,
TouchEventArgs e)
{
 if (currentPath is null)
 {
 return;
 }
 currentPath.Add(e.Touches.First());
 Invalidate();
}

In this method, you add the current touch to the current path and

again call Invalidate to cause the Draw method to be called.

The final event handler to modify is for the EndInteraction event.

private void OnGraphicsViewEndInteraction(object sender,
TouchEventArgs e)
{
 if (currentPath is null)
 {
 return;
 }
 currentPath.Add(e.Touches.First());
 Invalidate();
}

This has the exact same implementation as the DragInteraction event

handler.

The final set of changes to make is inside the Draw method so you can

actually see something on the screen.

Chapter 15 Let’s Get Graphical

492

public void Draw(ICanvas canvas, RectF dirtyRect)
{
 foreach (var path in paths)
 {
 canvas.StrokeColor = path.Color;
 canvas.StrokeSize = path.Thickness;
 canvas.StrokeLineCap = LineCap.Round;
 canvas.DrawPath(path.Path);
 }
}

This method loops through all of the paths that you have created from

the user interactions, setting the stroke color and size and then drawing the

path that was built up by the three event handlers that you just implemented.

�Registering Your Widget
The last part in your implementation of the sketch widget is to

register your view and view model with the MauiAppBuilder. Let’s

open up the MauiProgram.cs file and add the following lines into the

CreateMauiApp method:

WidgetFactory.RegisterWidget<SketchWidgetView, SketchWidgetView
Model>(SketchWidgetViewModel.DisplayName);
builder.Services.AddTransient<SketchWidgetView>();
builder.Services.AddTransient<SketchWidgetViewModel>();

�Taking Your Widget for a Test Draw
You should be able to run your application on all platforms, add a widget

of type Sketch to a board, and then interact with the widget to leave a fancy

doodle. Figure 15-3 shows the new sketch widget rendered on a board.

Chapter 15 Let’s Get Graphical

493

Figure 15-3.  The sketch widget showing my terrible doodling skills
running on macOS

�Building an Analog Clock Widget
We have covered how to handle user input and turning that into something

rendered on screen. I would like for us to introduce something slightly

more complex – an analog clock. Yes, we added the clock widget back in

Chapter 4, which displays the digital time, but I would like us to expand on

this concept and see how we could convert that information into an analog

clock. This will provide some nice exposure to translating and rotating the

canvas to hopefully make the maths much more simple.

Chapter 15 Let’s Get Graphical

494

�Creating the AnalogClockWidgetView
As with each of the widget views, you will be creating a XAML-based view.

You will be taking a slightly different approach to the SketchWidgetView as

you will create a view model and rely on that to handle most of the logic.

Add a new .NET MAUI ContentView (XAML) to your Views folder and

call it AnalogClockWidgetView.

�Modifying the AnalogClockWidgetView.xaml

The contents of the AnalogClockWidgetView.xaml file should be

modified to the following. For the sake of repeating myself, you want to

keep your visual tree as simple as possible. You only need to declare the

GraphicsView itself and no other container controls.

<?xml version="1.0" encoding="utf-8"?>
<GraphicsView
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:viewmodels="clr-namespace:WidgetBoard.ViewModels"
 x:DataType="viewmodels:AnalogClockWidgetViewModel"
 x:Class="WidgetBoard.Views.AnalogClockWidgetView" />

�Modifying the AnalogClockWidgetView.xaml.cs

You can open the AnalogClockWidgetView.xaml.cs file and modify the

contents to the following:

using System.ComponentModel;
using WidgetBoard.ViewModels;

namespace WidgetBoard.Views;

Chapter 15 Let’s Get Graphical

495

public partial class AnalogClockWidgetView : IWidgetView
{
 �public AnalogClockWidgetView(AnalogClockWidgetViewModel

clockWidgetViewModel)
 {
 InitializeComponent();
 WidgetViewModel = clockWidgetViewModel;
 }

 �private void ClockWidgetViewModelOnPropertyChanged(object?
sender, PropertyChangedEventArgs e)

 {
 �if (e.PropertyName == nameof(AnalogClockWidgetView

Model.Time))
 {
 Invalidate();
 }
 }

 public IWidgetViewModel WidgetViewModel
 {
 get => (IWidgetViewModel)BindingContext;
 set
 {
 BindingContext = value;

 if (BindingContext is Drawable drawable)
 {
 Drawable = drawable;
 }

 �if (BindingContext is INotifyPropertyChaned
propertyChanged)

 {

Chapter 15 Let’s Get Graphical

496

 �propertyChanged.PropertyChanged +=
ClockWidgetViewModelOnPropertyChanged;

 }
 }
 }
}

Most of the above should look familiar. I would like to highlight the

following additions that may not feel familiar.

The first item is the following line which assigns the view model as the

Drawable property on GraphicsView; this means that the view model will

have to implement the IDrawable interface because it will be responsible

for drawing on the canvas.

Drawable = drawable;

The next item is the code that subscribes to the PropertyChanged event

and then calls Invalidate on the GraphicsView to force the canvas to be

redrawn. This allows the Time changes in the view model to trigger the

canvas to be redrawn.

propertyChanged.PropertyChanged +=
ClockWidgetViewModelOnPropertyChanged;
private void ClockWidgetViewModelOnPropertyChanged(object?
sender, PropertyChangedEventArgs e)
{
 �if (e.PropertyName == nameof(AnalogClockWidgetViewModel.Time))
 {
 Invalidate();
 }
}

That concludes the changes required to the view; let’s proceed to

creating the backing view model.

Chapter 15 Let’s Get Graphical

497

�Creating the AnalogClockWidgetViewModel
The starting point will be to create a new class file in the ViewModels

folder. Do that and then modify the contents to match the following:

namespace WidgetBoard.ViewModels;

public class AnalogClockWidgetViewModel : BaseViewModel,
IWidgetViewModel, IDrawable
{
 public const string DisplayName = "Analog Clock";

 private readonly IDispatcher dispatcher;
 private DateTime time;

 public DateTime Time
 {
 get => time;
 set => SetProperty(ref time, value);
 }

 public int Position { get; set; }

 public string Type => "Analog Clock";

 public AnalogClockWidgetViewModel(IDispatcher dispatcher)
 {
 this.dispatcher = dispatcher;

 SetTime(DateTime.Now);
 }

 public void SetTime(DateTime dateTime)
 {
 Time = dateTime;

Chapter 15 Let’s Get Graphical

498

 this.dispatcher.DispatchDelayed(
 TimeSpan.FromSeconds(1),
 () => SetTime(DateTime.Now));
 }

 public void Draw(ICanvas canvas, RectF dirtyRect)
 {
 }
}

The above will look very similar to the ClockWidgetViewModel; in fact,

we could have modified the clock widget to support different rendering

modes (e.g., digital or analog); however, for the purpose of the book and

keeping the code examples succinct, I have opted to treat them as separate

widgets. I have left the Draw method empty deliberately for now; I want to

explain the maths involved before applying it to the code.

Firstly I would like for our circular clock to render markers for each

hour and then also render the hour, minute, and second hands. Given this,

we need to consider that

–– The second hand will move by a small increment of 6°

–– The minute hand will increment by 6° + the amount of

seconds that have elapsed

–– The hour hand will increment by 30° + the amount of

minutes that have elapsed

Figure 15-4 shows the angles required for hour, minute, and second

increments.

Chapter 15 Let’s Get Graphical

499

Figure 15-4.  The angles required for hour, minute, and second
increments

Given the above statements, you will now add in each part

incrementally to the Draw method in your AnalogClockWidgetViewModel.

cs file. The first step is to add in some constants and the color-related parts.

const int smallIncrement = 6;
const int largeIncrement = 30;

canvas.StrokeSize = 5;
canvas.StrokeColor = App.Current?.PlatformAppTheme == AppTheme.
Dark ? Colors.White : Colors.Black;

The above records the small and large angle increments that were

detailed in the list above, then the line width has been set, and finally, the

line color will either be white or black depending on whether the app is

running on a system with dark or light mode.

Chapter 15 Let’s Get Graphical

500

The next step is to render the hour markers on the clock. Interactions with

the canvas work in a similar way to general user interface building; the earlier

items are added or drawn the lower down in the visual tree they are; therefore,

if you rendered two things in the same space, it would be the last thing

rendered that would be visible. Let’s add the code to render the markers.

var radius = dirtyRect.Size.Height / 2;

canvas.Translate(dirtyRect.Center.X, dirtyRect.Center.Y);
var hourMarkerLength = dirtyRect.Size.Height / 10;

for (var i = 1; i <= 12; i++)
{
 canvas.Rotate(largeIncrement);
 �canvas.DrawLine(0, -(radius - hourMarkerLength), 0,

-radius);
}

The above code first determines the radius of the clock being half the

height of the widget; you could introduce some padding here if you wanted

or possibly check if the width is smaller than the height and take that value.

The next step is to perform a translation; this essentially means you are

moving where the origin is on the canvas – your code has now moved the

origin from the top left to the center of the canvas. Then inside the for

loop, the code will rotate the canvas by a largeIncrement, which is 30°,

and then draw a line to represent the marker. That is all the code required

to render the markers, so let’s proceed to rendering the hour hand using

the above statement: “the hour hand will increment by 30° + the amount of

minutes that have elapsed”.

const float minuteIncrement = smallIncrement / 60f;
var hourAngle = (Time.Hour * largeIncrement) + Time.Minute *
minuteIncrement;
canvas.Rotate(hourAngle);

Chapter 15 Let’s Get Graphical

501

canvas.DrawLine(0, -5, 0, -(dirtyRect.Size.Height / 5));
canvas.Rotate(-hourAngle);

The first part is to calculate the increment to apply to the “amount of

minutes that have elapsed” part; this is the smallIncrement divided by

the number of minutes in an hour. Then the code calculates the angle to

rotate the canvas by, draw the line, and then rotate back to 0. You could

calculate the difference between the hour hand and the minute hand, but

sometimes I find a well-intentioned piece of code like the above makes it

easier for others to come in and read.

One key part I should highlight is the use of negative numbers when

drawing the lines – this is because we are treating 12:00 as 0 degrees and

to render that without any orientation from our origin to the center of the

canvas, we need to draw a line upward.

The next code for the minute hand should look very similiar to the

hour hand.

const float secondIncrement = smallIncrement / 60f;
var minuteAngle = (Time.Minute * smallIncrement) + Time.Second
* secondIncrement;
canvas.Rotate(minuteAngle);
canvas.DrawLine(0, -5, 0, -(dirtyRect.Size.Height / 3));
canvas.Rotate(-minuteAngle);

You have just replaced the addition of minutes elapsed with seconds

elapsed and made the line slightly bigger.

Finally, the code for the second hand can be added as follows:

canvas.StrokeSize = 3;

var secondAngle = Time.Second * smallIncrement;
canvas.Rotate(secondAngle);
canvas.DrawLine(0, -5, 0, -(dirtyRect.Size.Height / 3));
canvas.Rotate(-secondAngle);

Chapter 15 Let’s Get Graphical

502

There are no extra increments to add here, so it is a simpler calculation

for the angle. This concludes the code required to render the clock; let’s

proceed to registering the widget so it can be added to a user’s board.

�Registering Your Widget
The last part in your implementation of the sketch widget is to

register your view and view model with the MauiAppBuilder. Let’s

open up the MauiProgram.cs file and add the following lines into the

CreateMauiApp method:

WidgetFactory.RegisterWidget<AnalogClockWidgetView, AnalogClock
WidgetViewModel>(AnalogClockWidgetViewModel.DisplayName);
builder.Services.AddTransient<AnalogClockWidgetView>();
builder.Services.AddTransient<AnalogClockWidgetViewModel>();

�Taking Your Widget for a Test Draw
You should be able to run your application on all platforms, add a widget

of type Analog Clock to a board, and then watch as the seconds tick by.

Figure 15-5 shows the new analog clock widget rendered on a board.

Chapter 15 Let’s Get Graphical

503

Figure 15-5.  The application showing both the original clock and
new analog clock widgets

�Summary
In this chapter, you have

•	 Learned what .NET MAUI Graphics is

•	 Gained an insight into some of the power provided by

.NET MAUI Graphics

•	 Built your own sketch widget with the .NET MAUI

GraphicsView control

•	 Taken the Graphics APIs further to also create an

analog clock widget

Chapter 15 Let’s Get Graphical

504

In the next chapter, you will

•	 Explore the concepts of distributing your application

•	 Learn about concepts like continuous integration and

continuous delivery to improve your development

processes

•	 Learn about linking, what it is, and how it can benefit/

hinder you

•	 Learn why it is important to collect analytical and crash

information

•	 Explore why you might want to consider obfuscating

your code

�Source Code
The resulting source code for this chapter can be found on the GitHub

repository at https://github.com/Apress/Introducing-.NET-MAUI-2nd-
ed/tree/main/ch15.

�Extra Assignment
Perhaps you can think of another concept where you can use .NET MAUI

Graphics – maybe the chart control idea I discussed or even just showing

the battery level in a widget or other device information.

�Source Code
I would love for you to have an attempt at this extra assignment, but I have

also provided the source code. The source code for this extra assignment

can be found on the GitHub repository at https://github.com/Apress/
Introducing-.NET-MAUI-2nd-ed/tree/main/ch15-extra.

Chapter 15 Let’s Get Graphical

https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch15
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch15
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch15-extra
https://github.com/Apress/Introducing-.NET-MAUI-2nd-ed/tree/main/ch15-extra

505© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_16

CHAPTER 16

Releasing Our
Application

�Abstract
Once you have built your application, you need to get it to your users.

There are many ways to achieve this. You can publish a release build and

ship it directly to your customers or you can make use of the stores that

each platform provider offers.

Shipping directly to an end customer can sometimes be the best

option, such as when you are building an internal application and you

don’t want it to be publicly accessible.

Most often the recommended way to ship applications to users is to

go through the stores provided by each platform provider (e.g., App Store

from Apple, Play Store from Google, and Microsoft Store from Microsoft).

This does involve agreeing to terms and conditions, and these providers

take a percentage of any income you make. There are many benefits that

justify paying the fees. They provide trusted platforms for users to find and

download your applications. The store will provide a much wider reach

for your intended audience. The store also manages the ability to provide

updates seamlessly.

https://doi.org/10.1007/979-8-8688-1189-0_16#DOI

506

This chapter has been split into two key sections: how you would go

about distributing your application and additional improvements you can

make to boost performance and reduce application size.

�Distributing Your Application
The aim of this section is not to give a step-by-step guide on distributing

to each of the stores mentioned above. Initially, I wanted to provide this

information, but the details around doing so have changed numerous times

during the time it has taken to write this book. For this reason alone, I will

defer to the platform providers and Microsoft’s documentation on how to

achieve distribution. What this chapter will cover is details around distributing

applications, how to build a relevant binary for each store, why you need to do

it, and some of the common issues that crop up during the process.

One very important thing to note is that apps built with .NET MAUI

follow the same rules and common issues that native applications follow.

Therefore, when encountering issues with each specific store, sometimes a

search engine will yield better results if you omit the .NET MAUI part.

I would like to highlight now that for each time you will be calling

dotnet publish within this chapter, you will need to follow these steps

based on the operating system that you are using.

�macOS

	 1.	 Open the Terminal application.

	 2.	 Enter the following command and then press return:

dotnet publish /path/to/WidgetBoard.csproj

Chapter 16 Releasing Our Application

507

�Windows

	 1.	 Open the Command Prompt application.

	 2.	 Enter the following command and then press return:

dotnet publish /path/to/WidgetBoard.csproj

�Android
Android has the biggest mobile user base. However, given the model it

follows of allowing manufacturers to customize the Android operating

system as well as providing varying sets of hardware, it can be the most

problematic.

An Android Package, or APK for short, is the resulting application file

that runs on an Android device. If you wish to provide a mechanism to

download this file (e.g., a website or file share), users can side-load the

application onto their Android device. This is not recommended in the

public domain because it can be very difficult to trust the packages that are

freely downloaded from the Internet.

When you wish to distribute using the Google Play Store, you are

required to build an Android App Bundle, or AAB for short. It contains all

of the relevant files needed to compile an APK ready for installation on a

user’s device.

Essentially you build an Android App Bundle, sign it with a specific

signing key that you own, and upload the bundle to Google Play. Google

uses this bundle when a user comes to download your application and

compiles a specific APK for that device. This is the way to do things now.

If you have worked with Android apps in the past, you may recall building

the APK yourself. This runs into the issue that the APK is architecture

specific, and in the current market where there are multiple architectures

supported by the various Android devices, you can end up with an

Chapter 16 Releasing Our Application

508

application size that is the sum of the number of architectures multiplied

by the actual size (e.g., if there are four architectures and the application

size is 25 MB, the resulting APK is 100 MB).

�Generating Your Android Application

This section will focus on how to generate the application using the

command-line tooling provided by .NET. The main reason for this is that

I believe understanding how to achieve it this way will make it relatively

straightforward to apply it to other scenarios such as including in your CI/

CD pipelines.

dotnet publish /path/to/WidgetBoard.csproj --framework
net9.0-android

It is worth highlighting that you can provide values for any

properties that can be added into a csproj file. For example, if

you look in your WidgetBoard.csproj file, you will see an entry for

<ApplicationVersion>1</ApplicationVersion>. This is an excellent

example because it is highly unlikely that you will always build an

application with the version of 1, and it is also unlikely that you will control

the version number inside the csproj file. In order to provide the value to a

build process, you can provide it as follows:

-p:ApplicationVersion=”12”

Therefore, the above publish command could look as follows:

dotnet publish /path/to/WidgetBoard.csproj --framework net9.0-
android -p:ApplicationVersion=”12”

Again this might not feel very helpful using a fixed number, but if

you imagine generating a number during your CI/CD pipeline build,

then you could provide that in as the value and then you have dynamic

Chapter 16 Releasing Our Application

509

version generation based on the version of the source being compiled.

Furthermore, it leads us nicely onto other properties that we can and must

supply when generating an Android application – signing properties.

�Signing Your Android Application

In order to distribute the application via the Google Play Store, you will

need to sign the application built using the dotnet publish command that

we have already covered. The reason for this is to allow Google to verify

that it is you uploading the builds and not someone else. With this in mind,

you will need to keep your signing details in a safe place!

In order to sign your Android application, you'll need to use a signing

key from your keystore. A keystore is a database of security certificates

that's created by using keytool from the Java Development Kit (JDK).

To create a keystore file, the following steps can be followed:

	 1.	 Open the command prompt or terminal application

on your computer.

	 2.	 Navigate to the folder of your project.

	 3.	 Run the keytool tool with the following parameters:

keytool -genkeypair -v -keystore {filename}.keystore -alias
{keyname} -keyalg RSA -keysize 2048 -validity 10000

The values above inside the { } characters should be replaced with

values that you decide upon. Once you have created your keystore and

stored it somewhere safe, you can provide it to the dotnet publish

command-line tool and generate an AAB file that can be uploaded to the

Google Play Store. The following shows the full command:

dotnet publish --framework net9.0-android
 -p:AndroidKeyStore=true
 -p:AndroidSigningKeyStore="{filename}.keystore"

Chapter 16 Releasing Our Application

510

 -p:AndroidSigningKeyAlias={keyname}
 -p:AndroidSigningKeyPass="{keypassword}"
 -p:AndroidSigningStorePass="{keypassword}"

Once you have run the above command, you will find that the tooling

has created a file named com.tinysoft.widgetboard-Signed.aab under the

WidgetBoard/bin/Release/net9.0-android/publish folder.

If you plan to use these details in your CI/CD pipelines, then I would

strongly recommend you look into secure options such as GitHub Secrets,

or whatever is appropriate on the platform that you are using.

�Additional Resources

Both Microsoft and Google provide documentation on how to distribute

applications via the Google Play Store. See the following links.

•	 Microsoft: How to publish an application ready for the

Play Store, https://learn.microsoft.com/dotnet/
maui/android/deployment/overview

•	 Google: How to upload your application to the Play

Store, https://developer.android.com/studio/
publish/upload-bundle

•	 It is also worth noting that other stores/platforms

provide the ability to distribute, install, and run

Android applications. Amazon devices such as the

Kindle Fire are built on top of Android and allow the

running of Android applications. Amazon provides its

own store, details of which can be found at https://
developer.amazon.com.

Chapter 16 Releasing Our Application

https://learn.microsoft.com/dotnet/maui/android/deployment/overview
https://learn.microsoft.com/dotnet/maui/android/deployment/overview
https://developer.android.com/studio/publish/upload-bundle
https://developer.android.com/studio/publish/upload-bundle
https://developer.amazon.com
https://developer.amazon.com

511

�iOS
iOS and macOS are considered really painful when dealing with

distributing and signing. Having spent several years going through this

pain, I want to break down the key concepts to hopefully reduce the pain

that you might experience. Thankfully the Apple tooling has come a long

way since I started building mobile apps in 2007, so you don’t have to

relive all those painful memories.

The following sections cover the development and application settings

you will need to create on the Apple developer website at https://
developer.apple.com.

�Certificate

You need to generate a certificate on the machine that will build your

application. Most documentation takes you through the complex scenarios

of creating a Certificate Signing Request and then uploading to Apple.

There is actually a far simpler way by using Xcode. The following steps can

help to achieve this:

•	 Click the Xcode main menu.

•	 Click Settings.

•	 Click the Accounts tab.

•	 Click the Manage Certificates button, shown in

Figure 16-1.		

Chapter 16 Releasing Our Application

https://developer.apple.com
https://developer.apple.com

512

Figure 16-1.  Apple settings screen showing how to manage
certificates

�Identifier

This represents your application. It requires you to define unique details

to identify the application that will be exposed to the public store as well

as defining what capabilities your application requires. Note that the value

you provide to Apple needs to match the value set in your project file under

<ApplicationId></ApplicationId> in your csproj file (WidgetBoard.

csproj in our case).

Chapter 16 Releasing Our Application

513

�Capabilities

iOS applications run under a sandboxed environment. Apple provides a

set of App Services that can be utilized by your applications and enhance

its capabilities. Capabilities include services like in-app purchasing, push

notifications, Apple Pay, and such. The use of these services needs to be

defined at compile time, and the usage of them will be reviewed when you

upload your application to Apple for review. Therefore, it’s important that

you make sure you only have the ones you need. Don’t worry, though; a

failure here will give a fairly useful error message and can be a relatively

easy fix. More information can be found at https://developer.apple.
com/documentation/xcode/capabilities.

Changes to the capabilities of your application will invalidate your

provisioning profiles so they will need to be edited in the https://
developer.apple.com portal to update them with the newer capabilities.

�Entitlements

Entitlements tie in closely with capabilities and allow you to configure

settings during compilation. You need to add an Entitlements.plist file

to your application and then add the relevant entries for the configuration.

Information on how to configure this can be found at https://learn.
microsoft.com/dotnet/maui/ios/deployment/entitlements.

�Provisioning Profiles

Provisioning profiles determine how your application will be provisioned

for deployment. There are two main types:

•	 Development: This is what you need when running a

debug build of your application on your own device.

•	 Distribution: This is required for the release builds

when you ship to the App Store.

Chapter 16 Releasing Our Application

https://developer.apple.com/documentation/xcode/capabilities
https://developer.apple.com/documentation/xcode/capabilities
https://developer.apple.com
https://developer.apple.com
https://learn.microsoft.com/dotnet/maui/ios/deployment/entitlements
https://learn.microsoft.com/dotnet/maui/ios/deployment/entitlements

514

A common issue around provisioning profiles is when trying to run

the application on your device and the tooling reports back Unable to

deploy app to this device, no provisioning profiles were found. When

observing this, a good starting point is to double-check that you have the

provisioning profile installed and whether the profile has been invalidated

by changing any capabilities.

�Generating Your iOS Application

This first part should look very similar to the Android arguments except we

provide a different Target Framework Moniker or TFM for short. The TFM

we provide to publish an iOS application is net9.0-ios, and you will have

spotted that this value exists inside your WidgetBoard.csproj file in the

<TargetFrameworks> element.

dotnet publish /path/to/WidgetBoard.csproj --framework net9.0-ios

In order to sign the iOS application, you need to provide two additional

arguments:

•	 -p:CodesignKey="": This is the name of the certificate

that you will have created using Figure 16-1.		

•	 -p:CodesignProvision="": This is the name of the

provisioning profile that you create on the Apple

developer website. Note that this will want to be of type

distribution.

Using the above details, we can now publish a signed iOS application

using the following example:

dotnet publish /path/to/WidgetBoard.csproj
 --framework net9.0-ios
 �-p:CodesignKey="Apple Distribution: Company Name

(ABCDEF12345)"
 -p:CodesignProvision="WidgetBoard Distribution"

Chapter 16 Releasing Our Application

515

Note that if you run this command now, you should see two warnings

and zero errors reported. If you were proactive during the building of the

application and solved the warnings, then great work! I haven’t opted to

ignore; in fact, I wanted to show how they can manifest into some less

clear warnings when we turn on full trimming later on in this chapter. For

clarity, the two warnings that I am referring to are

1>BoardDetailsPage.xaml(54,38): Warning XC0045 XamlC:

Binding: Property "IsChecked" not found on "WidgetBoard.ViewModels.

BoardDetailsPageViewModel".

1>FixedBoardPage.xaml(59,21): Warning XC0045 XamlC:

Binding: Property "Text" not found on "WidgetBoard.ViewModels.

FixedBoardPageViewModel".

Don’t worry, we will fix these in the “Trimming” section after we look

at the impact they have on trimming itself.

Once you have run the above command, you will find that the tooling

has created a file named WidgetBoard.ipa under the WidgetBoard/bin/

Release/net9.0-ios/ios-arm64/publish folder.

�Additional Resources

Both Microsoft and Apple provide documentation on how to distribute

applications via the Apple App Store.

•	 Microsoft: How to publish an application ready for the

App Store, https://learn.microsoft.com/dotnet/
maui/ios/deployment/overview

•	 Apple: How to upload your application to the App

Store, https://developer.apple.com/app-store/

Chapter 16 Releasing Our Application

https://learn.microsoft.com/dotnet/maui/ios/deployment/overview
https://learn.microsoft.com/dotnet/maui/ios/deployment/overview
https://developer.apple.com/app-store/

516

�macOS
When distributing your .NET MAUI application for macOS, you can

generate a .app or a .pkg file. A .app file is a self-contained app that can be

run without installation, whereas a .pkg is an app packaged in an installer.

�Generating Your macOS Application

This part should start to feel familiar; initially we are just changing the

TFM to net9.0-maccatalyst.

dotnet publish /path/to/WidgetBoard.csproj --framework net9.0-
maccatalyst

In order to build the macOS application that can be distributed via the

Apple App Store, you will need to generate a .pkg file. In order to do this,

you will need to provide the following additional build properties:

•	 -p:CreatePackage=true: This will tell the tooling to

create a .pkg file.

•	 -p:EnableCodeSigning=true: This will enable code

signing for the application.

•	 -p:PackageCodeSigning=true: This will enable code

signing for the .pkg file that is created.

•	 -p:CodesignKey="": This is the name of the certificate

that you will have created using Figure 16-1.		

•	 -p:PackageSigningKey="": This is also the name

of the certificate that you will have created using

Figure 16-1.		

•	 -p:CodesignProvision="": This is the name of the

provisioning profile that you create on the Apple

developer website. Note that this will want to be of type

distribution.

Chapter 16 Releasing Our Application

517

Using the above details, we can now publish a signed iOS application

using the following example:

dotnet publish /path/to/WidgetBoard.csproj --framework net9.0-
maccatalyst -p:CreatePackage=true -p:EnableCodeSigning=true
 -p:EnablePackageSigning=true -p:CodesignKey="Apple
Distribution: Company Name (ABCDEF12345)" -p:CodesignProvision
="WidgetBoard Distribution"-p:PackageSigningKey="3rd Party Mac
Developer Installer: Company Name (ABCDEF12345)"

Once you have run the above command, you will find that the tooling

has created a file named WidgetBoard-1.0.pkg under the WidgetBoard/

bin/Release/net9.0-maccatalyst/publish folder.

�Additional Resources

Both Microsoft and Apple provide documentation on how to distribute

applications via the Apple App Store.

•	 Microsoft: How to publish an application ready for the

App Store, https://learn.microsoft.com/dotnet/
maui/macos/deployment/overview

•	 Apple: How to upload your application to the App

Store, https://developer.apple.com/macos/
distribution/

�Windows
When distributing your .NET MAUI app for Windows, you can publish

the app and its dependencies to a folder for deployment to another

system. Publishing a .NET MAUI app for Windows creates an unpackaged

application by default, making it possible for you to create an installer

Chapter 16 Releasing Our Application

https://learn.microsoft.com/dotnet/maui/macos/deployment/overview
https://learn.microsoft.com/dotnet/maui/macos/deployment/overview
https://developer.apple.com/macos/distribution/
https://developer.apple.com/macos/distribution/

518

for your application. If you wish to distribute your application via the

Microsoft Store, then you need to modify your application to be published

as a packaged application (MSIX format).

MSIX is a Windows app package format that provides a modern

packaging experience to all Windows apps.

In order to build a packaged application, you can open your

WidgetBoard.csproj file and modify the following line (change in bold):

<WindowsPackageType>MSIX</WindowsPackageType>

�Generating Your Windows Application

In order to generate an MSIX package, you will first need to create a self-

signed certificate which can be done as follows:

	 1.	 Open a PowerShell terminal and navigate to the

directory with your project.

	 2.	 Use the New-SelfSignedCertificate command to

generate a self-signed certificate:

New-SelfSignedCertificate -Type Custom
 -Subject "CN=<PublisherName>" -KeyUsage
DigitalSignature -FriendlyName "My temp dev
cert" -CertStoreLocation "Cert:\CurrentUser\My"

	 3.	 Use the following PowerShell command to query the

certificate store for the certificate that was created:

Get-ChildItem "Cert:\CurrentUser\My" | Format-
Table Thumbprint, Subject, FriendlyName

	 4.	 Copy the Thumbprint to your clipboard as you will

use it in the dotnet publish command.

Chapter 16 Releasing Our Application

519

You can run the command as follows:

dotnet publish /path/to/WidgetBoard.csproj --framework net9.0-
windows -p:PackageCertificateThumbprint=ABC123

Where ABC123 will be the value of the Thumbprint for the certificate

that you just created.

Once you have run the above command, you will find that the tooling

has created a file named WidgetBoard.msix under the WidgetBoard/bin/

Release/net9.0-windows/publish/win10-x64 folder.

�Additional Resources

Microsoft provides documentation on how to distribute applications via

the Microsoft Store.

•	 Microsoft: How to publish an application ready for the

App Store, https://learn.microsoft.com/dotnet/
maui/windows/deployment/overview

•	 Microsoft: How to upload your application to the

Microsoft Store, https://developer.microsoft.com/
microsoft-store/

This concludes the section on how to generate binaries that can be

uploaded to each platform store. Let’s proceed to taking a look at how

applications can be optimized.

�Optimizing Your Application
Many issues can crop up when you make the jump from a debug build

running on a simulator, emulator, or physical device to building a release

build ready to run on an end user’s machine.

Chapter 16 Releasing Our Application

https://learn.microsoft.com/dotnet/maui/windows/deployment/overview
https://learn.microsoft.com/dotnet/maui/windows/deployment/overview
https://developer.microsoft.com/microsoft-store/
https://developer.microsoft.com/microsoft-store/

520

�Following Good Practices
Each of the platform-specific sections prior to this one contained

information or links to resources that show how to deploy your

applications to each platform provider’s public store. This is all great,

but one key detail that is lacking is the use of continuous integration and

continuous delivery (CI/CD) in order to provide a clean environment that

can reliably produce a build that can be deployed.

Continuous integration (CI) is the practice of merging all developers'

working copies to a shared mainline.

Continuous delivery (CD) is a software engineering approach in which

teams produce software in short cycles, ensuring that the software can be

reliably released at any time and, when releasing the software, without

doing so manually. It aims at building, testing, and releasing software with

greater speed and frequency. The approach helps reduce the cost, time,

and risk of delivering changes by allowing for more incremental updates to

applications in production. A straightforward and repeatable deployment

process is important for continuous delivery.

Both concepts are usually considered together as they help to make

it a far smoother experience when working in a team. I was there in the

early stages of learning and building apps and I neglected this part. If I

could go back and tell a much younger Shaun some advice, it would be

to get this part set up and early in the development process. Thanks to

the .NET CLI that is available to us, the setup to provide the necessary

steps is straightforward. On top of that, tools like GitHub, Azure DevOps,

TeamCity, and others will likely provide some level of out-of-the-box

support for this.

We covered earlier in this chapter how each of the applications can be

built with the .NET CLI; for example, Android can be built:

dotnet publish –-framework net9.0-android

Chapter 16 Releasing Our Application

521

I am using net9.0 here because my application is built against

.NET 9.0. If you are working against a different version of .NET, replace

net9.0 with your chosen version. If you are unsure what version

you are using, open your csproj file and look at the value inside the

<TargetFrameworks></TargetFrameworks> tags.

There are more required arguments to pass to the build, which involve

signing key passwords and more, but this shows how easily this can be

added to a set of automated steps that run each time code is committed or

a merge request is opened.

You should also consider the testing that you added in Chapter 13 and

see how this can also be incorporated into a CI environment.

dotnet test

This is far simpler than the publishing step. Running the tests in a CI

environment really should be considered a critical set of criteria when

building any application. The safety net that this provides in making sure

your changes do not unintentionally break other bits of functionality alone

makes it worthwhile.

�Performance
Android has always been one of the slower platforms when building

mobile applications. Don’t get me wrong; the applications can perform

well on the higher-end devices, but Android devices come in a wide

range of specifications, and typically in the business environment, it is

the cheaper devices that get bought in bulk and are expected to perform

well. There are some concepts that you should consider when publishing

your Android applications in order to boost the performance of your

applications.

Chapter 16 Releasing Our Application

522

�Startup Tracing

There are some extra steps that you can do in order to boost the startup

times of your Android applications. Startup tracing essentially profiles

an application when it starts to determine what libraries and other

initializations are required so when you release the application, it will

benefit from a faster startup time. It is worth noting that boosting the

startup time can result in an increase in application size, so I recommend

playing around with the settings to find the right balance for your

application.

Microsoft has published two great blog posts on how startup tracing

can be configured, the improvements it makes, and how the application

can be affected:

•	 https://devblogs.microsoft.com/dotnet/dotnet-7-
performance-improvements-in-dotnet-maui/

•	 https://devblogs.microsoft.com/xamarin/faster-
startup-times-with-startup-tracing-on-android/

�Image Sizes

One thing that can perform really poorly is the use of images that do not

match the dimensions in which they need to be rendered on screen.

For example, an image that displays at 100×100 pixels in the application

really should be that size when supplied. If you were to render an image

that was actually 300×300 pixels, it will not only look poor on the device

due to scaling, but it will slow the application down. Plus, it involves

storing an image that is bigger than really needed. Therefore, make sure

that your images are correctly sized to gain the best experience when

rendering them.

Chapter 16 Releasing Our Application

https://devblogs.microsoft.com/dotnet/dotnet-7-performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/dotnet/dotnet-7-performance-improvements-in-dotnet-maui/
https://devblogs.microsoft.com/xamarin/faster-startup-times-with-startup-tracing-on-android/
https://devblogs.microsoft.com/xamarin/faster-startup-times-with-startup-tracing-on-android/

523

�Use of ObservableCollection

A lot of common coding examples show how to bind an

ObservableCollection to the ItemsSource property of a control. This

can have its uses, but it can have a big performance overhead. The reason

is that each time an element is added to the collection, a UI update will

be triggered because the control is monitoring for changes against the

ObservableCollection. If you do not need live updating items in a

collection, it is typically much faster to use a List and simply raise the

PropertyChanged event from INotifyPropertyChanged instead.

Let’s take a look at the code you added in Chapter 9 and see how it can

be improved:

public ObservableCollection<Board> Boards { get; } = new
ObservableCollection<Board>();
public void LoadBoards()
{
 var boards = this.boardRepository.ListBoards();
 foreach (var board in boards)
 {
 Boards.Add(board);
 }
}

You can improve the performance of the above code by implementing

it with a List as follows:

private IList<Board> boards;
public IList<Board> Boards
{
 get => this.boards;
 private set => SetProperty(ref this.boards, value);
}

Chapter 16 Releasing Our Application

524

public void LoadBoards()
{
 Boards = this.boardRepository.ListBoards();
}

This new code will result in the UI only being updated once rather than

once per each board that is added to the Boards collection.

�Additional Resources

We have covered a large number of techniques and good practices to

follow throughout the course of this book in order to avoid a poorly

performing application. Microsoft does provide guidance on how to detect

issues and resolve them here: https://learn.microsoft.com/dotnet/
maui/deployment/performance.

�Trimming
While devices these days do tend to offer generous amounts of storage

space, it is still considered a very good practice to minimize the amount of

memory your apps really consume, especially when considering mobile

devices that have limited data networks in order to download the apps.

�What Is Trimming?

Trimming is performed by the tooling to remove unused code from

compiled assemblies. This helps to reduce the size of your applications

by trimming out any unused parts of libraries that you use. By default,

trimming is set to partial trimming, which means that only the .NET MAUI

assemblies will be scanned and have any unused code removed; this is

because those assemblies have been updated to be trim safe.

Chapter 16 Releasing Our Application

https://learn.microsoft.com/en-us/dotnet/maui/deployment/performance?view=net-maui-9.0
https://learn.microsoft.com/en-us/dotnet/maui/deployment/performance?view=net-maui-9.0

525

Trimming is a highly complex topic, and while you will be covering

how to fix some warnings the trimmer reports, I feel like I am only really

scratching the surface. For further reference, I recommend checking out

the Microsoft documentation at https://learn.microsoft.com/dotnet/
maui/deployment/trimming.

The trimmer provides the fantastic ability to reference the full .NET

Base Class Library (BCL) so when you compile your application ready

for distribution, it will only include the parts of that BCL that you actually

reference and use within your application.

One term used to describe part of the trimming process is tree shaking.

I believe the analogy holds up fairly well, if you imagine the tree (your

application code) is connected to branches (libraries) which are connected

to leaves or fruit (functions/classes inside the libraries). It will only be the

leaves and fruit that your application directly depends on and references

that won’t fall from the tree when it is shaken by the .NET compiler.

As you can imagine, if the Trimmer is unable to detect that something

is really used in your application and it is removed, things can go very

wrong at runtime. Your application will most likely crash when it tries to

use a type that isn’t included in your build.

This can quite often happen when only referring to types in XAML. As

I covered in Chapter 5, the XAML compiler isn’t as powerful as the C#

compiler, and it can miss scenarios. Since the release of .NET 9.0, a lot

of effort has been made to bridge the gap in terms of functionality or

at least the detection of used types. With this point in mind, we should

revisit the topic of compiled bindings from Chapter 5; by default, in .NET

MAUI 9.0+, the code base’s warnings will be reported if you do not use

compiled bindings; this is to prevent the scenario that I just mentioned. Of

course these are just warnings and won’t stop you from building and even

shipping your application, but please heed this warning and make sure to

clear all of those warnings up. Don’t worry, as part of this section, we will

work through concrete examples of how to fix these issues.

Chapter 16 Releasing Our Application

https://learn.microsoft.com/dotnet/maui/deployment/trimming
https://learn.microsoft.com/dotnet/maui/deployment/trimming

526

We have covered XAML and its limitations, but another key feature

to avoid is Reflection, or if you do use it, be careful to make sure that the

functionality the code is reflecting over will not be trimmed out. Not only

can it trick the compiler into not realizing APIs are used but it can also not

perform well.

It is worth considering that some third-party packages that you end

up using in your applications may not be trimmer safe. For this reason,

the default setting of partial is set. This means that only the assemblies

provided by Microsoft will be linked because they are built to be trimmer

safe. In an ideal world, the third-party libraries would also be trimmer

safe, but I can safely say that the people building these fantastic packages

are already spread thin building them, so if it is something that you really

require, I strongly urge you to investigate helping them provide it or

sponsoring the people that build it to help them.

�Enable Trimming

You can turn on full trimming with

<TrimMode>full</TrimMode>

If you make the change above in the WidgetBoard.csproj file and then

run the dotnet publish command again, you should see the following

warnings being reported. Note that I have run the command for net9.0-
ios, but you could run it against any target you desire.

�Warning IL2087

The first warning that I wanted to highlight is reported as follows:

/Users/shaunlawrence/Documents/work/projects/introducing-maui-

samples/second-edition/WidgetBoard/WidgetBoard/MauiProgram.
cs(95,9): Trim analysis warning IL2087: WidgetBoard.MauiProgram.

AddPage<TPage,TViewModel>(IServiceCollection, String): ‘serviceType’

argument does not satisfy 'DynamicallyAccessedMemberTypes.

Chapter 16 Releasing Our Application

527

PublicConstructors' in call to 'Microsoft.Extensions.DependencyInjection.

ServiceCollectionServiceExtensions.AddTransient(IServiceCollection,

Type)'. The generic parameter 'TPage' of 'WidgetBoard.MauiProgram.

AddPage<TPage,TViewModel>(IServiceCollection, String)' does not have

matching annotations. The source value must declare at least the same

requirements as those declared on the target location it is assigned to.

The warning is telling us that the AddTransient method provided

by .NET MAUI declares the DynamicallyAccessedMemberTypes.
PublicConstructors, and because our method AddPage calls

AddTransient, we need to preserve this declaration in order to make sure

that the method and related types are not trimmed out. Given this, we can

look to apply this change.

Open the MauiProgram.cs file and make the following change in bold.

private static void AddPage<[DynamicallyAccessedMembers
(DynamicallyAccessedMemberTypes.PublicConstructors)] TPage,
[DynamicallyAccessedMembers(DynamicallyAccessedMemberTypes.
PublicConstructors)] TViewModel>(

This will resolve the warning and make sure that trimming does not

introduce any unexpected behavior.

�Warning IL2026

This warning is reported multiple times, and while the warning message

might be similar, the fix is slightly different for each example that we will

work through. The first warning is reported as

ILLink : Trim analysis warning IL2026: WidgetBoard.ViewModels.

BoardDetailsPageViewModel: Using member 'Microsoft.Maui.Controls.

QueryPropertyAttribute.QueryPropertyAttribute(String, String)' which

has 'RequiresUnreferencedCodeAttribute' can break functionality when

trimming application code. Using QueryPropertyAttribute is not trimming

friendly and might not work correctly. Implement the IQueryAttributable

Chapter 16 Releasing Our Application

528

interface instead. https://learn.microsoft.com/dotnet/maui/
fundamentals/shell/navigation#process-navigation-data-using-a-
single-method

Yes, I know that we introduced the use of the QueryProperty attribute

earlier on in this book. I could have left it out, but I wanted to show

how to fix a number of trimming warnings and this is a great example.

Also at the point of writing, if you use a search engine to look up how to

pass data between view models, you will find blog posts referring to the

QueryProperty attribute; therefore, I believe it is important to explain the

detail here and show why we shouldn’t use it. Thankfully the message

provided by the analyzer tells us how to fix it, but the following section will

show how to fix it step by step.

The first step is to open the BoardDetailsPageViewModel.cs file.

Then you will want to delete the following line from the file:

[QueryProperty(nameof(BoardCreatedCompletionSource), "Created")]

Then you will want to make the class implement the

IQueryAttributable interface; see below with change in bold:

public class BoardDetailsPageViewModel : BaseViewModel,
IQueryAttributable

Finally, you can add the ApplyQueryAttributes method that is

required by the IQueryAttributable interface as follows:

public void ApplyQueryAttributes(IDictionary<string,
object> query)
{
 �BoardCreatedCompletionSource = query["Created"] as

TaskCompletionSource<Board?>;
}

These changes will resolve the warning.

Chapter 16 Releasing Our Application

https://learn.microsoft.com/dotnet/maui/fundamentals/shell/navigation#process-navigation-data-using-a-single-method
https://learn.microsoft.com/dotnet/maui/fundamentals/shell/navigation#process-navigation-data-using-a-single-method
https://learn.microsoft.com/dotnet/maui/fundamentals/shell/navigation#process-navigation-data-using-a-single-method

529

�Warning IL2026

This is the second occurrence of the IL2026 warning that we should be

observing and fixing. You will notice that the error message is different to

the previous section despite it being the warning; it is reported as

/Users/shaunlawrence/Documents/work/projects/introducing-

maui-samples/second-edition/WidgetBoard/WidgetBoard/obj/Release/

net9.0-ios/ios-arm64/Microsoft.Maui.Controls.SourceGen/Microsoft.Maui.

Controls.SourceGen.CodeBehindGenerator/Pages_BoardDetailsPage.
xaml.sg.cs(30,3): Trim analysis warning IL2026: WidgetBoard.Pages.

BoardDetailsPage.InitializeComponent(): Using member 'Microsoft.Maui.

Controls.Xaml.Internals.XamlTypeResolver.XamlTypeResolver(IXmlName

spaceResolver, Assembly)' which has 'RequiresUnreferencedCodeAttribute'

can break functionality when trimming application code. Loading XAML

at runtime might require types and members that cannot be statically

analyzed. Make sure all of the required types and members are preserved.

You may also recall me saying that there are two warnings reported

in the “Generating Your iOS Application” section; this is where we take a

closer look at that. For the sake of repeating myself, you can see that the

original warning is as follows:

1>BoardDetailsPage.xaml(54,38): Warning XC0045 XamlC:

Binding: Property "IsChecked" not found on "WidgetBoard.ViewModels.

BoardDetailsPageViewModel".

The main reason I am repeating this here is to show the difference

between the warning you see before setting TrimMode to Full and after. I

want to highlight that the warning before actually tells you how to fix the

issue whereas I am not sure I would know where to start with the new

warning. With this in mind, I would fully recommend working through

all warnings in your application prior to enabling features like trimming

or NativeAOT. Now that we have some valuable context in the original

warning message, let’s proceed to fixing it.

Chapter 16 Releasing Our Application

530

The way to resolve this warning is to open the BoardDetailsPage.xaml

file and make the following change (in bold):

<VerticalStackLayout IsVisible="{Binding
IsChecked, Source={x:Reference FixedRadioButton},
x:DataType=RadioButton}">

This change tells the XAML compiler what type is being provided to

the Source property and means that a compiled binding can be created.

This time the type being provided is of type RadioButton.

There is also a second instance of this warning to fix. I am only

including the warning which is reported prior to enabling full trimming

mode because it tells us how to fix it.

1>FixedBoardPage.xaml(59,21): Warning XC0045 XamlC:

Binding: Property “Text” not found on “WidgetBoard.ViewModels.

FixedBoardPageViewModel”.

The way to resolve this warning is to open the FixedBoardPage.xaml

file and make the following change (in bold):

<Picker
 ItemsSource="{Binding AvailableWidgets}"
 SelectedItem="{Binding SelectedWidget}"
 SemanticProperties.Description="{Binding Text,
Source={x:Reference SelectTheWidgetLabel}, x:DataType=Label}"

This change tells the XAML compiler what type is being provided to

the Source property and means that a compiled binding can be created.

This time the type being provided is of type Label.

This now concludes the changes required to enable full trimming

mode. You won’t be clear of trimmer warnings, but the changes required to

fix them are the same for when enabling NativeAOT support which we will

now cover.

Chapter 16 Releasing Our Application

531

�Ahead-of-Time Compilation
Ahead of Time or AOT for short is the process. At the time of writing, AOT is

not supported for Android, but all other platforms are supported.

We covered back in Chapter 1 how .NET MAUI applications run on

the Mono runtime on Android, iOS, and macOS. By enabling AOT in a

.NET MAUI application, our applications will run on an entirely different

runtime – the NativeAOT runtime.

�Enable NativeAOT

In order to enable AOT compilation in your applications, you can add the

following to your project. In fact, let’s add it to the WidgetBoard.csproj file.

<PropertyGroup>
 <IsAotCompatible>true</IsAotCompatible>

 <PublishAot>true</PublishAot>
</PropertyGroup>

This will enable more analyzers as per the trimming option that you

turned on earlier. The warnings generated from the analyzers should

not be ignored because they will most likely lead to runtime errors. This

is a very important thing to consider when enabling trimming or AOT

support because you will most likely be able to compile and publish

your application; there is no guarantee that it will work though. I have

confidence that following the testing chapters earlier, you will have created

a suitable test suite to have the confidence that your application will

behave at runtime.

Currently at the time of writing, Refit is not trim or NativeAOT

compliant; therefore, despite showing how great it was to use back

in Chapter 11, if you want to build an application that fully supports

NativeAOT, you would need to remove the dependency on Refit. Let’s

proceed to fixing this to truly make the application support NativeAOT.

Chapter 16 Releasing Our Application

532

The first step here is to reintroduce the WeatherForecastService class

from Chapter 11. Don’t worry, I am not expecting you to keep jumping

back; below is a detailed list of the items to change.

�Remove Refit

The first step is to remove the Refit NuGet package from the project. I have

opted to do this directly in the project file. Open the WidgetBoard.csproj

file and delete the following entry:

<PackageReference Include="Refit.HttpClientFactory"
Version="7.2.1" />

Next we need to modify the IWeatherForecastService.cs file; you want

to delete any code referring to Refit; thankfully the file is small so the result

should look as follows:

namespace WidgetBoard.Communications;

public interface IWeatherForecastService
{
 �Task<Forecast?> GetForecast(double latitude, double

longitude, string apiKey);
}

Next we want to introduce the WeatherForecastService.cs file again.

Add a new class file called WeatherForecastService and modify the

contents to the following:

using System.Text.Json;

namespace WidgetBoard.Communications;

public class WeatherForecastService : IWeatherForecastService

Chapter 16 Releasing Our Application

533

{
 private readonly HttpClient httpClient;
 �private const string ServerUrl = "https://api.

openweathermap.org/data/2.5/weather?";

 public WeatherForecastService(HttpClient httpClient)
 {
 this.httpClient = httpClient;
 }

 �public async Task<Forecast?> GetForecast(double latitude,
double longitude, string apiKey)

 {
 var response = await httpClient
 �.GetAsync($"{ServerUrl}lat={latitude}&lon=

{longitude}&units=metric&appid={apiKey}")
 .ConfigureAwait(false);
 response.EnsureSuccessStatusCode();
 var stringContent = await response.Content
 .ReadAsStringAsync()
 .ConfigureAwait(false);
 var options = new JsonSerializerOptions
 {
 PropertyNameCaseInsensitive = true
 };
 �return JsonSerializer.Deserialize<Forecast>

(stringContent, options);
 }
}

Chapter 16 Releasing Our Application

534

Finally, we need to modify the registrations within MauiProgram.cs.

Open that file up and make the following changes:

builder.Services
 .AddRefitClient<IWeatherForecastService>()
 �.ConfigureHttpClient(c => c.BaseAddress = new Uri

("https://api.openweathermap.org/data/2.5"))
 .AddStandardResilienceHandler(static options =>
 {
 options.Retry = new HttpRetryStrategyOptions
 {
 BackoffType = DelayBackoffType.Exponential,
 MaxRetryAttempts = 3,
 UseJitter = true,
 Delay = TimeSpan.FromSeconds(2)
 };
 });

Wants to be changed to

builder.Services
 .AddHttpClient<WeatherForecastService>()
 .AddStandardResilienceHandler(static options =>
 {
 options.Retry = new HttpRetryStrategyOptions
 {
 BackoffType = DelayBackoffType.Exponential,
 MaxRetryAttempts = 3,
 UseJitter = true,
 Delay = TimeSpan.FromSeconds(2)
 };
 });

Chapter 16 Releasing Our Application

535

And also add this line into the CreateMauiApp method:

builder.Services.AddSingleton<IWeatherForecastService,
WeatherForecastService>();

Now that we have reintroduced the code, if you run a dotnet publish

command, you will see that the tooling now reports a warning; let’s take a

look at how to fix that.

�Warning IL3050

The warning that the tooling reports is as follows:

1>WeatherForecastService.cs(29,16): Warning IL3050 : Using

member 'System.Text.Json.JsonSerializer.Deserialize<TValue>(String,

JsonSerializerOptions)' which has 'RequiresDynamicCodeAttribute'

can break functionality when AOT compiling. JSON serialization and

deserialization might require types that cannot be statically analyzed and

might need runtime code generation. Use System.Text.Json source generation

for native AOT applications.

The reason a warning is reported is due to the fact that the

deserialization code does not guarantee a hard reference to the properties

of the Forecast class being deserialized. Now it may be say because our

code might prevent the linker from removing the properties, but to be

safe, we can make use of a source generator provided by System.Text.Json

to make sure nothing will be trimmed away. In order to prevent this from

happening, we can create a ForecastContext class and pass it into the

Deserialize method. In fact, the last part of the warning message told us

what to do just not how to do it. Let’s take a look at this now; you should

add the following class into your Forecast.cs file:

[JsonSerializable(typeof(Forecast))]
partial class ForecastContext : JsonSerializerContext
{
}

Chapter 16 Releasing Our Application

536

then you can change the call to Deserialize in the GetForecast

method in the WeatherForecastService.cs file to match as follows (change

in bold):

return JsonSerializer.Deserialize<Forecast>(stringContent,
ForecastContext.Default.Forecast);

This will tell System.Text.Json to use the new generator parsing context

and make sure that no properties for the Forecast class are trimmed

out. Running a dotnet publish command should also confirm that this

warning has now been removed.

�When Libraries Don’t Support Trimming or AOT
There will be times when a library won’t support trimming or AOT; in fact,

both SQLite-net and LiteDB do not support them at the time of writing.

We could take a similar approach that we did with Refit and find a suitable

alternative that does support trimming – Microsoft.Data.Sqlite is one such

example, which can be found at https://www.nuget.org/packages/
Microsoft.Data.Sqlite. However, we will not be opting for this approach

in favor of showing you how to exclude libraries from being trimmed.

In order to exclude a library from being trimmed, you can open your

WidgetBoard.csproj file and add the following entry:

<ItemGroup>
 <TrimmerRootAssembly Include="LiteDB" />
</ItemGroup>

The above changes will exclude LiteDB from being trimmed from your

application.

This now concludes the changes required to resolve warnings for

trimming and NativeAOT support; let’s take a look at the improvements

it makes.

Chapter 16 Releasing Our Application

https://www.nuget.org/packages/Microsoft.Data.Sqlite
https://www.nuget.org/packages/Microsoft.Data.Sqlite

537

�Results
I mentioned earlier that the use of trimming and NativeAOT can reduce

application sizes. Table 16-1 shows the improvements.

Table 16-1.  Application sizes when using different trim modes and

NativeAOT

Android iOS Mac Catalyst Windows

Partial trim 31.8 MB 60.1 MB 121.5 MB 22.4MB

Full trim 29.7 MB 49.4 MB 102 MB 20.2 MB

NativeAOT Not supported 22.2 MB 45.5 MB 15.5 MB

This concludes the section on optimizing your application. I would like

to finish by saying that supporting trimming and NativeAOT is a great idea

but I wouldn’t pile too much pressure onto teams to fully support them

from day one. There can be a lot of pain and complexities to deal with,

especially when relying on a number of third-party packages which might

not support it themselves.

�Crashes/Analytics
Given that I have covered how things can go wrong, I would like to cover

a way in which you can gain insight to when that happens. Each of the

platform providers does offer a way to collect crash information and report

it to you in order to make sure that you can prevent things like crashes

from ruining the experience your applications provide.

There are frameworks/packages that aim to make this process easier by

collecting and collating information from each platform into a centralized

site. Further to this, you can enable the collection of analytic information

to aid your understanding of how your users like to interact with your

application and identify areas that you can improve upon.

Chapter 16 Releasing Our Application

538

In fact, a lot of the effort in my day job goes into finding ways to

improve products. This only truly comes to light when you learn how your

users interact with your applications. Capturing analytic information

isn’t the sole route I recommend taking. End user engagement can also

be a fantastic thing to do if you have the opportunity. I would also like

to highlight things like App Tracking Transparency by Apple and the

Google equivalent as you want to make sure that when collecting analytic

information, you are not passing on information that can be used to track

your users, or you at least make them aware of it. Further to this, it is

considered good practice to allow users to opt in to enable the collection of

analytical information rather than just capturing it or making them opt out.

There are some companies that provide solutions for this already. They

are fee based but do offer a free tier with fewer features.

�Sentry

Sentry offers a .NET MAUI package that will make it easier to collect crash

and analytical information. The website contains details on its usage and

pricing: https://sentry.io/for/dot-net/.

Sentry also has the source code open sourced on GitHub and provides

usage examples as well as assisting in understanding what the code does:

https://github.com/getsentry/sentry-dotnet/tree/main/src/
Sentry.Maui

�Obfuscation
It is a very safe assumption that if you are providing a compiled application

to users’ devices, any of the code in the application can be compromised,

intellectual property (IP) can be stolen, or an attacker can learn about

vulnerabilities in your application. If you really wish to retain your IP,

then you likely want to keep it on a server-side component and have your

Chapter 16 Releasing Our Application

https://sentry.io/for/dot-net/
https://github.com/getsentry/sentry-dotnet/tree/main/src/Sentry.Maui
https://github.com/getsentry/sentry-dotnet/tree/main/src/Sentry.Maui

539

application call it via a web API. That being said, there is still serious value

in making use of tools that obfuscate the compiled code base to make it

more difficult for an attacker to decipher what the application is doing.

Let’s take a look at a simple class and how it will look when decompiled

after obfuscation.

public class SomethingSecure
{
 private string PrivateSecret { get; } = "abc";
 internal string InternalSecret { get; } = "def";
 public string PublicSecret { get; } = "ghi";
}

The code decompiled using ILSpy without being obfuscated first looks

as follows:

using System;
public class SomethingSecure
{
 private string PrivateSecret { get; } = "abc";
 internal string InternalSecret { get; } = "def";
 public string PublicSecret { get; } = "ghi";
}

If you run the original code through an obfuscation tool and then

decompile the source, you will end up with something like the following:

// \u0008\u0002
using System;
[\u000f\u0002(1)]
[\u000e\u0002(0)]
public sealed class \u0008\u0002

Chapter 16 Releasing Our Application

540

{
 �private readonly string m_\u0002 = \u0002\u0003.\

u0002(-815072442);
 �private readonly string m_\u0003 = \u0002\u0003.\

u0002(-815072424);
 �private readonly string m_\u0005 = \u0002\u0003.\

u0002(-815072430);
 private string \u0002()
 {
 return this.m_\u0002;
 }
 internal string \u0003()
 {
 return this.m_\u0003;
 }
 public string \u0005()
 {
 return this.m_\u0005;
 }
}

It is clear from the above that it is much more difficult now to follow

what this code is doing.

Obfuscation does not make it impossible for attackers to gain an

understanding of what the code does. It does, however, make that task

much more difficult. I would also add that you should consider any of

the code within your client-based applications as insecure; ultimately if

someone wanted to break into it to understand what is happening, they

can and will. I would highly recommend making sure that any items such

as passwords or web service tokens are stored in places like SecureStorage

and not directly in code. For any important algorithms you implement,

Chapter 16 Releasing Our Application

541

if you want these to remain your own intellectual property, you should

keep these deployed to a server-side component which you can control

access to.

�Distributing Test Versions
There are a lot of different tools and websites that help you ship test builds

out to people who can test your application. I have become most fond of

using the deployment options provided by Apple and Google. The main

reason I prefer to do it this way is that you do not need to change any of

your deployment processes. You can continue to publish applications

ready for releasing to the public via each store. In fact, these processes

even upload the builds to the store portals. They simply allow you to

release the application to a subset of users.

As is in keeping with this chapter, I won’t walk you through each of

these portals because the details can change from time to time. I refer you

to the documentation provided by each platform provider and strongly

urge you to investigate.

•	 Apple TestFlight, https://testflight.apple.com

•	 Google Play Internal Testing, https://play.google.
com/console/about/internal-testing/

�Summary
In this chapter, you have

•	 Explored the concepts of distributing your application

•	 Learned about continuous integration and continuous

delivery to improve your development processes

Chapter 16 Releasing Our Application

https://testflight.apple.com
https://play.google.com/console/about/internal-testing/
https://play.google.com/console/about/internal-testing/

542

•	 Learned about trimming, what it is, and how it can

benefit/hinder you

•	 Learned about NativeAOT and the benefits it can bring

•	 Covered why it is important to collect analytical and

crash information

•	 Explored why you may want to consider obfuscating

your code

•	 Reached the end of our application-building journey

together

Chapter 16 Releasing Our Application

543© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0_17

CHAPTER 17

Conclusion

�Abstract
Wow! If you made it this far, I want to thank you so much! I really hope that

you have enjoyed reading this book as much as I enjoyed writing it. This

book was designed to give you an insight into what .NET MAUI offers and

how you can use it to build real-world applications. The sample we built

together covers a lot of the key concepts. Of course I could have filled the

book with hundreds more pages, adding in so many more widgets and

features to the application. This application is a concept that is near and

dear to my heart, so I can tell you that it will continue to evolve over time. I

would love to hear where you decide to take it next, and I would love to see

what you create next.

�Looking at the Final Product
The application we just finished building together has been a pet project

of mine for years, so thank you for helping me to finally reach this dream!

Let’s take a trip down memory lane to review what exactly we have built.

Figure 17-1 shows my prototype sketch.

https://doi.org/10.1007/979-8-8688-1189-0_17#DOI

544

Figure 17-1.  Sketch prototype of the application

The process of building this application has taken you through many

different concepts including

•	 Creating a .NET MAUI application project

•	 Reviewing the possible architectural patterns you can

use to build .NET MAUI applications

•	 Learning about the building blocks that make up your

application’s UI

•	 How you can further expand on the UI through styling

•	 How to make your application accessible

•	 How to create your own layout and utilize some

cool features like BindableLayout to do a lot of the

heavy lifting

•	 How to store data and the scenarios around where best

to store each type of data

Chapter 17 Conclusion

545

•	 How to access different types of remote data and the

scenarios around when things go wrong

•	 How to customize your application on a

per-platform basis

•	 How to test your application

•	 The concept of distributing your application

•	 How to further optimize your application with good

practices and other features such as trimming and

NativeAOT

All of the items above made for a really fun journey! And the end

result is almost identical to my original plan. Figure 17-2 shows the final

application with the widgets.

Figure 17-2.  The final application showing the widgets that we have
added plus the results of some of the extra assignment sections

Chapter 17 Conclusion

546

Finally, in Figure 17-3, you can see the end result running on an old

Kindle Fire HD device that I have sitting on my home office desk.

Figure 17-3.  The final application that I use on a daily basis

�Taking the Project Further
One main reason I really love this project is that I believe the possibilities

of future widgets are wide open! I could provide a list as long as my arm

on ideas that we could continue to achieve together. If I could, I would

have fit them all in this book, but I would probably never have finished.

Here is a short list of the things that I think we could achieve based on the

knowledge that you have gathered in the book:

Chapter 17 Conclusion

547

•	 Family planning calendar

•	 Image widget

–– Slideshow from device

–– Slideshow from external web service

•	 Shopping list

•	 Home assistant integration

•	 OctoPrint status widget

•	 Smart meter widget

•	 Social media follower count widget

I am repeating myself here, but I would really love to hear from you

about your experience reading this book and where you have decided to

take our application next.

�Useful Resources
There are so many great places to find information on either building .NET

MAUI applications or solving issues that may arise during that experience. The

following list is a collection of websites that provide some really great content

along with a few specific examples of content creators on those platforms.

�StackOverflow
Stack Overflow (https://stackoverflow.com) is a question-and-answer

site where you can seek assistance for issues that you encounter. Often

someone else has already asked the question so you can find the answer

you need. If you can't find a .NET MAUI-specific question/answer, it is

worth also looking for Xamarin.Forms question/answers given that it is the

predecessor to .NET MAUI.

Chapter 17 Conclusion

https://stackoverflow.com

548

�GitHub
GitHub (https://github.com/dotnet/maui) is where the .NET MAUI

repository is hosted and the framework is developed in the open. I strongly

recommend keeping up to date with the discussions and issues on this

repository.

�YouTube
There are some really great content creators providing video tutorials

on how to build .NET MAUI applications. Two great creators are in fact

Microsoft employees; however, they build this content in their own free

time, which I believe goes to show just how passionate they are about the

framework.

�Gerald Versluis

www.youtube.com/c/GeraldVersluis

�James Montemagno

www.youtube.com/c/JamesMontemagno

�Social Media
There is a whole host of social media options such as LinkedIn, Discord,

Twitter, Bluesky, and Facebook. I urge you to find the platform that works

best for you and start finding and following people that work on or with the

technology.

Chapter 17 Conclusion

https://github.com/dotnet/maui
http://www.youtube.com/c/GeraldVersluis
http://www.youtube.com/c/JamesMontemagno

549

�Yet More Goodness
It is impossible to provide a curated list of all the great content creators or

resources in printed form. It will instantly become outdated. In fact, by the

time you have finished this book, you may well have become another name

to add to this list! For that reason, here is a great resource that provides a

curated list: https://github.com/jfversluis/learn-dotnet-maui.

�Looking Forward
While .NET MAUI offers us a lot, there is still so much more that will

evolve. I fully expect there to be some extensive work applied to improving

the ability to test the user interfaces of .NET MAUI applications along with

further enhancements in the usage of .NET MAUI Graphics, which has the

potential to not only render applications identically across each platform

(which is very similar to how Flutter works) but also to boost performance

by moving away from the native controls that come with Android.

I feel the need to highlight the lack of sections here. In the first edition,

I had points highlighting what I wanted to see in terms of better testing

support. I was able to delete all of those items in this update because .NET

MAUI provides support for all of it. That isn’t to say it won’t and shouldn’t

continue to evolve. I am sure concepts like automation testing will

continue to become easier.

Thank you again for reading!

Chapter 17 Conclusion

https://github.com/jfversluis/learn-dotnet-maui

551© Shaun Lawrence 2025
S. Lawrence, Introducing .NET MAUI, https://doi.org/10.1007/979-8-8688-1189-0

Index

A
AbsoluteLayout, 118–120, 225
Accessibility

applications
Android, 245
iOS, 245
macOS, 246
Windows, 246

definition, 227
dynamic text sizing, 240–245
principles, 228, 229
reasons, 228
resources

checklist, 247, 248
website, 248

screen reader support, 230–237
suitable contrast, 238–240

Adaptive icon, 111
AddAdditionalAppiumOption, 466
AddBoardCommand, 178, 179
AddScoped, 60
AddSingleton, 59
AddTransient, 60, 527
AddWidget method, 259, 310
Ahead-of-time (AOT), 11
Ahead-of-time compilation

AOT compilation, 531, 532
Refit NuGet package, 532–535

Warning IL3050, 535, 536
Analog clock widget

creation, 493–501
registering, 502

AnalogClockWidgetView, 494
modification, 494–496

AnalogClockWidgetViewModel
contents, 497–503

AnalogClockWidgetViewModel.cs
file, 499

Android
Appium, 454
application, 509, 510
generation, 508
image sizes, 522
mappers, 413
ObservableCollection, 523, 524
platform-specific

components, 397–399
Android App Bundle (AAB),

507, 509
Android driver, 454, 466–467
Android Package (APK), 507, 508
Android platform, 46, 47

accessibility, 245
app icons, 111
platform-specific lifecycle

events, 67, 68

https://doi.org/10.1007/979-8-8688-1189-0#DOI

552

screen reader, 230
storage security, 340

Android Virtual Device (AVD), 466
Animations

cancelling, 276
chain, 276
complex, 278–282
concurrent, 276
easings, 277, 278
methods, 274
prebuilt methods, 275
triggers and, 283, 284

App data directory, 297
App icons, 50

adding your own icon, 110, 111
image resources, 109
platform differences

Android, 111
iOS and macOS, 112

Appium, 452–456
Appium inspector, 457–459
AppiumLocalService, 461
Appium NuGet Package, 461
Appium Platform

Drivers, 463–465
Appium Server, 453, 454, 461–463
Application building

ahead-of-time
compilation, 531–536

Android, 507–510
iOS, 511–515
macOS, 506, 516–518
.NET MAUI, 506

trimming, 524–530
Windows, 507, 517–519

Application lifecycle
application states, 61, 62
cross-platform lifecycle

events, 65, 66
handling lifecycle events, 63, 65
lifecycle events, 62, 63
platform-specific lifecycle

events, 66–70
Application state lifecycle, 61, 62
ApplyQueryAttributes method,

221, 309, 329, 528
ApplyToDerivedTypes, 264
AppShell

register, MAUI App builder, 163
resolve, 163, 164
setting BindingContext, 162

AppShellViewModel, 147, 155, 163,
302, 303

AppShell.xaml, 45, 142, 150,
157, 439

AppShell.xaml.cs, 45, 162, 303, 439
AppThemeBinding, 267
App.xaml, 45, 262, 439
App.xaml.cs, 45, 64, 163, 439
Assistive technologies, 228,

229, 240
Asynchronous operations

ClockWidgetViewModel Mock,
436, 437

creating your tests, 433–436
creating your view tests,

437, 438

Android platform (cont.)

INDEX

553

ILocationService Mock, 429,
430, 432

WeatherForecastService Mock,
432, 433

AutomationId
property, 472

AutomationProperties, 237
AutomationProperties.

ExcludeWithChildren, 237
AutomationProperties.

IsInAccessibleTree, 237
Automation testing, 549

add New Board
Button, 473–476

Android Driver, 466, 467
Appium, 452, 453
Appium NuGet Package, 461
Appium Platform Drivers,

463, 465
Appium Server, 461–463
CollectionView, 478, 479
consistency, 459
create boards, 476–478
definition, 451, 452
installing Appium

Android, 454
iOS, 455
macOS, 454
Windows, 454

installing Appium Driver
macOS, 455
Windows, 456

installing Appium
Inspector, 457–459

installing Node.js, 453
installing WinAppDriver,

456, 457
iOS Driver, 467
macOS Driver, 467, 468
parameterizing

Android configuration, 469
Command Line/

Terminal, 471
iOS configuration, 469, 470
macOS configuration, 470
Visual Studio

configuration, 471
Windows configuration, 471

Windows Driver, 468
writing, 472, 473

B
Base class

library (BCL), 4, 5, 525
BaseViewModel, 90–93
Behaviors

application, 288
approaches, 284
attaching, 287, 288
creation, 285, 286

BindableLayout, 197, 198
BindableLayout.ItemsSource, 197
BindableLayout.ItemTemplate, 197
BindableLayout.

ItemTemplateSelector, 197
BindingContext, 87, 130, 131,

155, 162–163

INDEX

554

Bindings
BindingContext, 130, 131
Command, 138–141
compiled, 141, 142
mode, 131, 133
MultiBinding, 135–138
Path, 131
remaining, 134, 135
source, 129, 133
target, 129

Board.cs, 106, 107, 314
BoardDetailsPage, 108, 142
BoardDetailsPageViewModel, 108,

109, 134, 300, 427
BoardLayout, 192, 252, 256

BoardLayout.xaml, 196–198
BoardLayout.xaml.cs, 198–203
creation, 195

BoardLayout.xaml, 196–198
BoardLayout.xaml.cs

adding remaining bits, 202, 203
ChildAdded event, 201, 202
coding, 198
ItemsSource property, 200
ItemTemplateSelector property,

200, 201
LayoutManager property,

198, 199
BoardListPage, 146, 148,

167, 170–171
BoardListPageViewModel, 148,

304, 305
BoardSearchHandler, 175,

176, 305–307

BoardWidgets, 307, 315, 317, 318, 325
Bootstrapping, 51, 55, 463

C
C#, 78, 86, 87
Cache directory, 296–297
Camera API, 13
Canvas, 485, 486, 493, 496
Chain animations, 276
ChangeCanExecute method, 140
CheckStatusAsync method, 386
ChildAdded event, 201, 202
Chosen approach

adding overlay view, 255, 256
showing overlay view, 259, 261
updating view model, 257–259

ClockWidget, 74, 217, 218
ClockWidgetView, 95–97,

218, 436–438
ClockWidgetViewModel, 93, 94,

135, 363
ClockWidgetViewModel Mock,

436, 437
C# markup, 85–88
Code generation libraries, 379
CollectionView, 159, 478, 479
Command, 138–141
Command line, 31

creating, 36, 37
CommunityToolkit.Maui, 381
CommunityToolkit.Maui.Markup, 87
Compiled bindings, 139, 141, 142,

257, 333, 525, 530

INDEX

555

Compiler directives, 403, 404,
406, 416

Complex animations, 275, 278–282
Composition, 251, 285
Concurrent animations, 276, 283
Conditional statements, 409, 410
Constructor injection, 58, 130
ContainsKey method, 332
Content creators, 547–549
ContentPage, 77, 115, 116, 167, 178
Continuous delivery (CD), 504,

520, 541
Continuous integration (CI), 504,

520, 541
Controls, 6, 193
Converters, 371, 381
Crashes/analytics, 537, 538
CreateBoard method, 316, 323
CreateBoardWidget method,

316, 324
CreateMauiApp method, 55, 336,

391, 440
CurrentBoard, 157, 160, 161, 169

D
Database

definition, 298
entity relationship diagram, 298
LiteDB, 319–326
normalization, 298
repository pattern, 299–311
SQLite, 311–319
types, 298

DataTrigger, 268–270
Dependency injection (DI), 5, 45,

55–58, 130, 148, 235, 358
Deserialization process, 354, 355
Design-time validation, 141
Device testing

adding, 441, 442
adding new project, 439
adding Runner NuGet

package, 439
definition, 438
remove extra entries, 441
remove unnecessary

contents, 439
replace CreateMauiApp, 440
replace WidgetBoard Project, 440
running, 443, 444

dotnet, 33, 506
Draw method, 482–484, 486, 490
DrawingPath class, 490
Dynamic text sizing

avoiding fixed sizes, 241–243
font auto scaling, 244
guideline, 241
preferring minimum sizing, 244

E
Easings, 277, 278
Enable Developer Mode, 26, 27
EndInteraction event, 491
EnsureIndex method, 323
EnterActions, 270, 271
Entity relationship diagram, 298

INDEX

556

EventTrigger, 268
ExitActions, 270, 271
Explicit styling, 264
eXtensible Application Markup

Language (XAML),
see XAML

F
File system

abstraction, 296
app data directory, 297
cache directory, 296

FindById method, 325
FixedBoardPage, 146, 165, 166, 222
FixedBoardPageViewModel, 148,

218, 220, 222, 223, 307
FixedLayoutManager, 252

building board layout, 209–211
content, 204
creation, 203
NumberOfColumns property,

205, 206
number of rows and

columns, 205
NumberOfRows property,

206, 207
setting row/column position,

211, 212
tap/click support, 207, 208

FlexLayout, 121, 122
Flyout

application, 164–166
board selection, 161

collection of boards, 160, 161
FlyoutContent, 159, 160
FlyoutHeader, 158
navigation to board selection, 162
overview, 157
register AppShell with MAUI

App builder, 163
resolve AppShell, 163, 164
setting BindingContext your

AppShell, 162, 163
FlyoutContent, 158–160
FlyoutHeader, 158
Font auto scaling, 244–245
Fonts, 50, 51

application, 291
clock widget rendering, 292
configure, 291
embed, 291
purpose, 290
usage, 291

Font scaling, 241, 244, 250
ForecastContext class, 535
Forecast.cs, 356

G
Generic Host Builder

DI, 55–58
registering dependencies, 59, 60

Geolocation API
displaying permission errors,

396, 397
ILocationService, 393–395
registering LocationService, 393

INDEX

557

registering service, 391
using service, 392, 393

GetForecast method, 358, 433, 536
Get method, 329, 331, 332
GitHub, 348, 349, 548
Google Play Store, 507, 509, 510
GoToAsync method, 179
GraphicsView, 482, 488, 496
Grid, 122–124, 197
GridUnitType.Star value, 210

H
Handlers

abstract controls, 410
BoardLayout class, 412
customizing controls with

mappers, 412–416
.NET MAUI, 411
renderers, 411

Hard-coded dependency
approach, 55

HorizontalStackLayout, 125, 126
HttpClient backing field, 358

I
Images, 51–53
IBoardRepository interface, 311,

312, 320
ICanvas implementation, 482
IDispatcher implementation, 331
IDrawable

interface, 482, 486, 496

ILayoutManager, 192, 194, 195,
204, 211

ILocationService, 393–395, 434
ILocationService Mock, 429,

430, 432
ImageSource, 361
Implicit styling, 263
Incidental text, 238
Inheritance, 262, 285
INotifyPropertyChanged interface,

79, 427, 428
Intermediate language (IL), 11
Inversion of Control (IoC), 57
iOS, 1, 11, 20, 47, 68–69, 112, 230,

245–246, 341, 399–401, 511
iOS Driver, 455, 467–468
iOS platform, 47

accessibility, 245
additional resources, 515
app icons, 112
Appium, 455
arguments, 514, 515
capabilities, 513
certificate, 511, 512
entitlements, 513
identifier, 512
mappers, 413
platform-specific components,

399, 401
platform-specific lifecycle

events, 68, 69
provisioning profiles, 513, 514
screen reader, 230
storage security, 341

INDEX

558

IQueryAttributable interface, 155,
156, 528

IsEqualToStateConverter, 374, 375
ItemsSource property, 174, 175,

197, 200
ItemTemplateSelector property,

200, 201
IValueConverter

interface, 372
IWeatherForecastService, 356, 363,

380, 381, 435
IWidgetView, 94, 95, 202
IWidgetViewModel, 89, 90

J
JetBrains Rider, 16
Just-in-time (JIT), 11

K
Keychain API, 341

L
Label.FormattedText, 361
Large-scale text, 238
LayoutManager property, 198, 199
Layouts, 194

AbsoluteLayout, 118–120
creation, 213
FlexLayout, 121, 122
Grid, 122–124
HorizontalStackLayout, 125, 126

updating FixedBoardPage
ViewModel, 220, 222

VerticalStackLayout, 126–129
widgets

ClockWidget, 217, 218
creation, 215–217
MauiAppBuilder, 217
purposes, 213
registration and view

models, 214, 215
WidgetTemplateSelector, 218–220

Lifecycle events, 62, 63
cross-platform mappings, 65, 66
handling, 63, 65

LINQ-based
expressions, 317, 324

Linux development, 19
LiteDB

connecting, 322
creating tables, 323
defined, 319
deleting database, 325
inserting database, 323
installing, 320
mapping, 322
reading database, 324
reading single entity

database, 325
updating an entity in

database, 326
usage, 320, 321

LiteDBBoardRepository, 320
LoadBoards method, 303, 304, 330

INDEX

559

LoadWeatherForecast method, 394
Local data

application settings
(preferences), 327–336

back up and widget, 342
database (see Database)
definition, 295, 296
filesystem, 296, 297
options, 296
setting page, 343
storage security, 336–341

viewing result, 341
LocationAlways, 387
LocationService, 393–395, 403
LocationWhenInUse, 386–388

Logotypes, 238

M
MacCatalyst, 48

platform-specific lifecycle
events, 68, 69

macOS
accessibility, 246
app icons, 112
clock widget application, 99
MauiReactor, 82
.NET MAUI workload, 32
Remote Access, 22–25
remote login options, 25
sharing options, 24
system settings, 23
Visual Studio, 27–30
Xcode, 20–22

macOS Driver, 467, 468
macOS platform, 506

Appium, 454
Appium Driver, 455
application, 516, 517
mappers, 413
platform-specific components,

399, 401
resources, 517
storage security, 341

MainPage.xaml, 45, 97

MainPage.xaml.cs, 45, 98
MainThread.InvokeOnMain

ThreadAsync method, 388
Mappers

on Android, 413
applying globally, 414, 415
applying single instances, 416
applying single page, 415, 416
handler architecture, 412
on iOS/Mac catalyst, 413
on Windows, 414

MauiAppBuilder, 217, 220, 502
MauiAsset, 53
MauiProgram.cs, 45, 108, 109,

146–149, 220, 291, 313
MauiReactor

definition, 81
macOS, 82
Windows, 82

MauiSplashScreen, 54
Measuring stick, 73, 74
Media playback, 14, 15
MockClockWidgetViewModel, 438

INDEX

560

Mockup of board, 191, 192
Modal, 252, 253
Model View Update (MVU)

benefits, 81
implementation, 83–85
MauiReactor, 81, 82
overview, 80, 81
parts, 80

project format, 82, 83
Model View ViewModel (MVVM)

adding views, 94–97
benefits, 76
choosing, 88
enhancements

frameworks, 99, 100
magic, 100–103

model, 76
overview, 75, 76
view

C# (code-behind), 78
ContentPage/

ContentView, 77
definition, 77
XAML, 77

viewing your widget
application, 98, 99
modifying MainPage.xaml, 97
modifying MainPage.

xaml.cs, 98
ViewModels, 78–80, 89–94

Mono runtime, 4, 5, 531
MSTest, 421
MultiBinding, 135–138

MultiTrigger, 269

N
Navigation

backward, 154
flyout, board selection, 162
IQueryAttributable, 155, 156
passing data, 154, 155
performing, 153
QueryProperty, 156, 157
registering pages, 151–153
Tabs, board selection, 170

.NET 9.0, 35, 142, 521, 525

.NET Framework selection
dialog, 36

.NET Hot Reload, 10

.NET MAUI Blazor Hybrid, 9, 13

.NET MAUI Community Toolkit,
15, 87, 153, 254

.NET MAUI ContentView (XAML),

95, 196, 359, 487, 494
.NET MAUI essentials

concepts, 386
configuring platform-specific

components, 397
geolocation API, 391–397
handlers, 410–416
overriding, platform-specific

UI, 407–416
permissions, 386–391
platform-specific API

access, 403–407
.NET MAUI Graphics, 481

Draw method, 482, 483
paths, 483, 484

INDEX

561

pixel-perfect graphics, 482
surface updation, 482

.NET Multi-platform App UI
(.NET MAUI)

application tasks, 6
building applications, 3, 15–17
Button control, 6
code sharing, 2, 8, 9
commercial offerings, 11, 12
community, 9
competition, 6, 7
compiling and running, 4
components, 2
concepts, 544, 545
definition, 1
developer freedom, 9
development cycle

.NET Hot Reload, 10
XAML Hot Reload, 10

full breakdown, 5
home office desk, 546
interacting APIs, 2
knowledge, 546
limitations, 12–14
performance, 10, 11
platform implementations, 13
platform-specific APIs, 3
platform support, 2, 7, 8
project structure, 43–54
resources, 547
selecting project type, 34
sketch prototype, 543, 544
unit testing (see Unit testing)
user interfaces, 549

widgets, 545
workload, 31, 32
Xamarin, 5

Network connectivity, 349
Network resilience

handling, 376–378
Newtonsoft, 353
NumberOfColumns property,

205, 206
NumberOfRows property, 206, 207
NUnit, 421, 459, 463

O
Obfuscation, 538–541
Object relational mapping

(ORM), 326
ObservableCollection, 160,

523, 524
OnAddBoard

method, 179, 181, 184
OnAppearing method, 303, 304
OnBindingContextChanged

method, 199
OnItemSelected method, 174, 175
OnNavigatedTo

method, 303–305
OnPlatform, 407
OnPlatform Markup Extension,

408, 409
OnPropertyChanged

method, 91, 92
OnQueryChanged method, 173,

174, 306

INDEX

562

Open Weather API
connecting, 356–359
creating account, 350
creating API key, 351
creating your models, 354–356
examining data, 351–353
registering your widget, 365, 366
running and showing, 367, 368
System.Text.Json, 353, 354
testing your widget, 366, 368
WeatherWidgetView, 359–362
WeatherWidgetViewModel,

362–365
OpenWeatherApiToken, 338, 339
Open Web Application Security

Project (OWASP), 349
Operating systems, 19, 20, 63, 339
Overlaying-a-view approach, 254
Overriding, platform-specific UI

conditional statements, 409, 410
OnPlatform, 407
OnPlatform Markup Extension,

408, 409

P
Pair to Mac screen, 29, 30

Path element, 131
Permissions

checking status, 386, 387
handling applications, 389, 391
requesting, 388, 389

Permissions.RequestAsync
method, 388

Placeholder, 176, 188, 192–194, 197
PlatformLocationService, 405, 438

PlatformLocationServiceTests, 441
Platforms/folder, 44

Android, 46, 47
iOS, 47
MacCatalyst, 48
Tizen, 48
Windows, 49

Platform-specific API access
compiler directives,

403, 404
folders, 405–407

Platform-specific components
Android, 397–399
exceptions and error

messages, 397
iOS/Mac, 399, 401
Windows, 402

Platform-specific lifecycle events
Android, 67, 68
iOS and MacCatalyst, 68, 69
Windows, 69, 70

Popups, 254
Preferences

checking key, 332
defined, 327
displaying, 332–336
getting value, 329–331
implementation, 327
removing, 332
setting a value, 328, 329
storage, 327, 328

preferences.Get method, 331

INDEX

563

Prerequisites, 74, 75
Shell

pages, 145–147
user interface essentials

models, 106, 107
pages, 107, 108
ViewModels, 108, 109

Project structure, .NET MAUI
AppShell.xaml and AppShell.

xaml.cs, 45
App.xaml, 45
App.xaml.cs, 45
MainPage.xaml and MainPage.

xaml.cs, 45
MauiProgram.cs, 45
Platforms/ folder, 44, 46–49
Resources/ folder, 45, 49–54
single project, 43

Property changed method, 206

Q
QueryProperty, 156, 157, 528

R
Raw files, 53
Refit NuGet Package,

379–381, 532–535
RegisterWidget method, 214
Relative luminance, 238
Remote access, 22–25
Remote data, 295

definition, 347

failures, 349
loading times, 348
security, 349, 350
web services (see Web services)

Repository pattern
AppShellViewModel, 302, 303
BoardListPageViewModel,

304, 305
BoardSearchHandler, 305–307
coding, 299
creating board, 300, 301
defined, 299
loading board, 307–311

ResourceDictionary, 113
Resources/ folder, 45

AppIcon, 50
fonts, 50, 51
images, 51–53
raw files, 53
splash, 54
styles, 54

RouteNames, 152, 153
Rubber band animation, 280–282
RunAfterAllTests, 465
RunBeforeAnyTests, 465

Runsettings, 465, 467, 469, 470

S
SaveCommand model, 138
SaveWidget method, 310
Scalable Vector Graphics (SVG), 52
ScaleTo animation, 278, 279
Scoped registration, 60

INDEX

564

Screen reader support
on Android, 230
AutomationProperties, 237
AutomationProperties.

ExcludeWithChildren, 237
AutomationProperties.

IsInAccessibleTree, 237
concept, 230
on iOS, 230
navigation, 231–235

SemanticScreenReader, 235, 237
SearchHandler

adding data, 172, 173
application, 176, 177
BoardSearchHandler, 175, 176
defined, 172
implementation, 172
inherit, 173
OnItemSelected method,

174, 175
OnQueryChanged method,

173, 174
Security

remote data, 349, 350
SemanticProperties class

code setting, 234, 235
defined, 231
SemanticProperties.

Description, 231–233
SemanticProperties.

HeadingLevel, 233
SemanticProperties.Hint, 233

SemanticProperties.Description
property, 231–233

SemanticProperties.HeadingLevel
property, 233

SemanticProperties.Hint
property, 233

SemanticScreenReader, 235, 237
Sentry, 538
ServiceProvider, 59, 215
Set method, 328, 329
SetProperty method, 92, 221
Setter, 264
SettingsPage, 146

SettingsPageViewModel, 149, 334
Shell

definition, 149
flyout, 157–166
navigation, 151–157
prerequisites, 145–149
search, 172
ShellContent, 150
tabs, 166–171
ToolbarItems, 177–187
ViewModels, 147–149

ShellContent, 150
ShouldShowRationale, 387
ShowOverlayTriggerAction, 272,

273, 275

Singleton registration, 59
Sketch widget, 492

SketchWidgetViewModel,
485, 486

SketchWidgetViewModel, 485, 486
SketchWidgetView.xaml, 487, 488
SketchWidgetView.xaml.cs,

 488–492

INDEX

565

Snapshot testing
application, 445
golden master, 444
Verify.Xunit NuGet Package, 446
WidgetBoard and WidgetBoard.

Tests, 446, 448, 449
Social media, 547, 548
Splash screen, 54, 112, 113
SQLite

connecting, 313, 314
creating tables, 316
defined, 311
deleting database, 319
inserting database, 316
installing, 311
mapping information, 314, 315
reading database, 317
reading single entity from

database, 317, 318
updating database, 319
usage, 312, 313

SqliteBoardRepository, 312, 316
Sqlite-net-pcl, 311, 318
sqlite-net-sqlcipher, 326
Stack Overflow, 547
Startup tracing, 522
StateContainer, 381

Stockholm syndrome, 87
Storage security

coding, 336
constructor, 337
CreateMauiApp method, 336
fields and properties, 337
platform-specific APIs

Android, 340
iOS and macOS, 341
Windows, 341

reading value, 339
removing value, 339
storing value, 338

Styles, 54, 113, 262
Styling

advantages, 261–263
AppThemeBinding, 267
creation, 265, 267
default

ApplyToDerivedTypes, 264
setter, 264
TargetType, 263

overlay, 266
Suitable contrast, 238–240

System.Text.Json, 353, 354, 535

T
Tabs

application, 171
BoardDetailsPage, 166
board selection, 169
collection of boards, 168
ContentPage element, 167
navigation to board selection, 170
setting BindingContext uour

BoardListPage, 170, 171
SettingsPage, 167

Target net9.0, 423, 424

TargetType, 263–264

Temperature property mapping, 355

INDEX

566

TestCase attribute, 476
Test draw, 492–493, 502, 503
Test versions, 541

Tizen platform, 48
ToolbarItems

AddBoardCommand, 179
application, 184–187
concepts, 178
adding ContentPage, 178
ContentPage

returning result, 183, 184
waiting for result, 181–183

PresentationMode property
adding cancel button, 180, 181
adding ContentPage

element, 180
overview, 180

showing page and wait for
result, 181

Transient registration, 60

TriggerAction, 271–273
Triggers

and animations, 283, 284
DataTrigger, 269, 270
defined, 268
EnterActions and ExitActions,

270, 271
TriggerAction, 271–273
types, 268

Trimming, 524
analogy, 525
command, 526
libraries, 536
third-party packages, 526

Warning IL2026, 527–530
Warning IL2087, 526
XAML compiler, 525

Troubleshooting installation
issues, 31, 32

TypeConverters, 361

U
UIAutomator2, 454
UI thread, 331, 388
Unit testing

adding new project dialog, 422
adding project to your solution,

422, 423
asynchronous operation (see

Asynchronous operations)
definition, 419, 420
framework, 421
MAUI dependencies, 425, 426
MSTest, 421
NUnit, 421
Reference Manager, 425
reference your project, 424
Target net9.0, 423, 424
view models, 426–428
xUnit, 420

User interaction, 85, 138, 234,
486, 487

User interface essentials
app icons, 109–112
application, 143
bindings, 129–142
BoardDetailsPage, 142

INDEX

567

layouts, 118–129
prerequisites, 105–109
splash screen, 112, 113
XAML, 113–118

User interface renders, 13, 14

V
ValidForecastResultsInSuccessful

Load test, 445
VerifyTests, 445
VerticalStackLayout, 115,

116, 126–129
View-based file, 113
ViewModels, 78–80

adding IWidgetViewModel, 90
MVVM-based architecture, 89–94
Shell, 147–149
user interface essentials, 108, 109

Views, 77, 78, 94–97
Vision impairment, 228
VisualElement, 274, 275, 277, 280
Visual Studio, 15, 16

automation testing, 471
building and running, 37–39
build target selection

drop-down, 38
configure your project dialog, 35
creating, 33–36
macOS, 27–30
toolbar with Pair to Mac

buttons, 30
Windows, 25, 26

Visual Studio Code, 16

Visual Studio Installer, 31

W
Warning IL2026, 527–530
Warning IL2087, 526, 527
Warning IL3050, 535, 536
WeatherForecastService class, 532
WeatherForecastService Mock,

432, 433
WeatherWidgetView, 359–362
WeatherWidgetViewModel,

362–365, 428, 445
Web Assembly (WASM) support, 13
Web Content Accessibility

Guidelines (WCAG),
228, 247

Web services
adding Refit NuGet

Package, 379–381
code generation libraries, 379
converting state to UI, 371, 372
displaying error state, 375, 376
displaying loaded state, 374
displaying loading state, 372
loading code, 369
network resilience handling,

376, 378
Open Weather API, 350–368
prebuilt libraries, 379
visual feedback, 369

WidgetBoard, 38, 40, 41
WidgetBoard.AutomationTests

project, 472
WidgetBoard Project, 74, 82, 172,

285, 440
WidgetBoard.SnapshotTests, 445

INDEX

568

WidgetBoard solution, 365, 377,
379, 460

WidgetFactory, 213, 258
Widgets

application, 545
chosen approach, 254–261
ClockWidget, 217, 218
creation, 215–217
MauiAppBuilder, 217
overlaying view, 253
purposes, 213
registration and view models,

214, 215
showing modal page, 252, 253
showing popup, 254

WidgetTemplateSelector, 218–221

WinAppDriver, 456, 457
Windows, 507, 517, 518

accessibility, 246
Appium, 454
Appium Driver, 456
application, 518, 519
enable Developer Mode, 26, 27
firewall request, 28
mappers, 414
MauiReactor, 82
.NET MAUI workload, 32
platform, 49
platform-specific

components, 402
platform-specific lifecycle

events, 69, 70
storage security, 341
Visual Studio, 25, 26

Windows Driver, 456, 468
Windows Software Development

Kit (SDK), 246
Windows UI

Library (WinUI) 3, 11

X
Xamarin Essentials, 6, 296
Xamarin.Forms, 5, 44, 58
Xamarin framework, 5
XAML, 77

building your first
page, 116–118

definition, 113
dissecting, 114–116
OnPlatform markup

extension, 408
types

ResourceDictionary, 113
view-based file, 113

XAML Hot Reload, 10
XAML vs. C# Markup, 85–88
Xcode, 16, 20–22, 511
XCUITest, 455

xUnit, 420, 421

Y
YouTube, 548

Z
Z-index, 256

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to .NET MAUI
	Abstract
	What Is .NET MAUI?
	Digging a Bit Deeper
	Where Did It Come From?
	How It Differs from the Competition

	Why Use .NET MAUI?
	Supported Platforms
	Code Sharing
	Developer Freedom
	Community
	Fast Development Cycle
	.NET Hot Reload
	XAML Hot Reload

	Performance
	Strong Commercial Offerings

	Limitations of .NET MAUI
	No WebAssembly (WASM) Support
	No Camera API
	Apps Won’t Look Identical on Each Platform
	Lack of Media Playback Out of the Box

	The Glass Is Half Full, Though
	How to Build .NET MAUI Applications
	Visual Studio
	Rider
	Visual Studio Code

	Summary

	Chapter 2: Building Our First Application
	Abstract
	Setting Up Your Environment
	macOS
	Xcode
	Remote Access

	Windows
	Visual Studio
	Enable Developer Mode

	Visual Studio to macOS

	Troubleshooting Installation Issues
	.NET MAUI Workload Is Missing
	Visual Studio Installer
	Command Line
	macOS
	Windows
	Results for Both

	Creating Your First Application
	Creating in Visual Studio
	Creating in the Command Line

	Building and Running Your First Application
	Getting to Know Your Application
	WidgetBoard

	Summary
	Source Code

	Chapter 3: The Fundamentals of .NET MAUI
	Abstract
	Project Structure
	/Platforms/ Folder
	Android
	iOS
	MacCatalyst
	Tizen
	Windows
	Summary

	/Resources/ Folder
	AppIcon
	Fonts
	Images
	Raw
	Splash
	Styles

	Where to Begin?
	Generic Host Builder
	What Is Dependency Injection?
	Registering Dependencies
	AddSingleton
	AddTransient
	AddScoped

	Application Lifecycle
	Application States
	Lifecycle Events
	Handling Lifecycle Events
	Cross-Platform Mappings to Platform Lifecycle Events
	Platform-Specific Lifecycle Events
	Android
	iOS and MacCatalyst
	Windows

	Summary

	Chapter 4: An Architecture to Suit You
	Abstract
	A Measuring Stick
	Prerequisites
	Model View ViewModel (MVVM)
	Model
	View
	XAML
	C# (Code-Behind)

	ViewModel

	Model View Update (MVU)
	Getting Started with MauiReactor
	macOS
	Windows

	Overview of the MVU Project Format
	Adding Your MVU Implementation

	XAML vs. C# Markup
	Plain C#
	C# Markup

	Chosen Architecture for This Book
	Adding the ViewModels
	Adding IWidgetViewModel
	Adding BaseViewModel
	Adding ClockWidgetViewModel

	Adding Views
	Adding IWidgetView
	Adding ClockWidgetView

	Viewing Your Widget
	Modifying MainPage.xaml
	Modifying MainPage.xaml.cs
	Taking the Application for a Spin

	MVVM Enhancements
	MVVM Frameworks
	Magic

	Summary
	Source Code

	Chapter 5: User Interface Essentials
	Abstract
	Prerequisites
	Models
	Board.cs

	Pages
	BoardDetailsPage

	ViewModels
	BoardDetailsPageViewModel

	App Icons
	Adding Your Own Icon
	Platform Differences
	Android
	iOS and macOS

	Splash Screen
	XAML
	Dissecting a XAML File
	Building Your First XAML Page

	Layouts
	AbsoluteLayout
	FlexLayout
	Grid
	HorizontalStackLayout
	VerticalStackLayout

	Data Binding
	Binding
	BindingContext
	Path
	Mode
	Source

	Applying the Remaining Bindings
	MultiBinding
	Command
	Compiled Bindings

	Make Use of the BoardDetailsPage
	Taking Your Application for a Spin
	Summary
	Source Code

	Chapter 6: Shell
	Abstract
	Prerequisites
	Pages
	BoardListPage
	FixedBoardPage
	SettingsPage

	ViewModels
	AppShellViewModel
	BoardListPageViewModel
	FixedBoardPageViewModel
	SettingsPageViewModel

	Shell
	ShellContent
	Navigation
	Registering Pages for Navigation
	Performing Navigation
	Navigating Backward
	Passing Data When Navigating
	IQueryAttributable
	QueryProperty

	Flyout
	FlyoutHeader
	FlyoutContent
	Collection of Boards
	Selected Board
	Navigation to the Selected Board
	Setting the BindingContext of Your AppShell
	Register AppShell with the MAUI App Builder
	Resolve the AppShell Instead of Creating It
	Taking Your Application for a Spin

	Tabs
	Collection of Boards
	Selected Board
	Navigation to the Selected Board
	Setting the BindingContext of Your BoardListPage
	Taking Your Application for a Spin

	Search
	Add Our Data
	Inherit from SearchHandler
	Handling the OnQueryChanged Method
	Handling the OnItemSelected Method
	Using the BoardSearchHandler
	Taking Your Application for a Spin

	ToolbarItems
	Add a ToolbarItem to a ContentPage’s ToolbarItems
	Changing the PresentationMode of a ContentPage
	Returning a Result from a ContentPage
	Taking Your Application for a Spin

	Summary
	Source Code

	Extra Assignment
	Source Code

	Chapter 7: Creating Our Own Layout
	Abstract
	Placeholder
	ILayoutManager
	BoardLayout
	BoardLayout.xaml
	BindableLayout

	BoardLayout.xaml.cs
	Adding the LayoutManager Property
	Adding the ItemsSource Property
	Adding the ItemTemplateSelector Property
	Handling the ChildAdded Event
	Adding Remaining Bits

	FixedLayoutManager
	Accepting the Number of Rows and Columns for a Board
	Adding the NumberOfColumns Property
	Adding the NumberOfRows Property

	Providing Tap/Click Support Through a Command
	Building the Board Layout
	Setting the Correct Row/Column Position for Each Widget

	Using Your Layout
	Adding a Factory That Will Create Instances of Your Widgets
	Allowing for the Registration of Widget Views and View Models
	Creation of a Widget View
	Creation of a Widget View Model
	Registering the Factory with MauiAppBuilder
	Registering Your ClockWidget with the Factory

	WidgetTemplateSelector
	Registering the Template Selector with MauiAppBuilder

	Updating FixedBoardPageViewModel
	Finally Using the Layout

	Summary
	Source Code

	Extra Assignment
	Source Code

	Chapter 8: Accessibility
	Abstract
	What Is Accessibility?
	Why Make Your Applications Accessible?
	What to Consider When Making Your Applications Accessible
	How to Make Your Application Accessible
	Screen Reader Support
	Enabling the Screen Reader on iOS
	Enabling the Screen Reader on Android
	Try Using the Screen Reader
	SemanticProperties
	SemanticProperties.Description
	SemanticProperties.Hint
	SemanticProperties.HeadingLevel
	Setting SemanticProperties from Code

	SemanticScreenReader
	AutomationProperties
	AutomationProperties.ExcludedWithChildren
	AutomationProperties.IsInAccessibleTree

	Suitable Contrast
	Dynamic Text Sizing
	Avoiding Fixed Sizes
	Preferring Minimum Sizing
	Font Auto Scaling

	Testing Your Application’s Accessibility
	Android
	iOS
	macOS
	Windows

	Useful Resources
	Accessibility Checklist
	A Guide for Making Apps Accessible

	Summary
	Source Code

	Extra Assignment

	Chapter 9: Advanced UI Concepts
	Abstract
	Adding the Ability to Add a Widget to a Board
	Possible Ways of Achieving Your Goal
	Showing a Modal Page
	Overlaying a View
	Showing a Popup

	The Chosen Approach
	Adding Your Overlay View
	Updating Your View Model
	Showing the Overlay View

	Styling
	Examining the Default Styles
	TargetType
	ApplyToDerivedTypes
	Setter

	Creating a Style
	AppThemeBinding
	Further Reading

	Triggers
	Creating a DataTrigger
	EnterActions and ExitActions
	Creating a TriggerAction
	Creating ShowOverlayTriggerAction
	Using ShowOverlayTriggerAction

	Further Reading
	Basic Animations
	Combining Basic Animations
	Chaining Animations
	Concurrent Animations

	Cancelling Animations
	Easings
	Complex Animations
	Recreating the ScaleTo Animation
	Creating a Rubber Band Animation

	Combining Triggers and Animations
	Behaviors
	Creating Our Behavior
	Attaching Our Behavior
	Taking the Application for a Spin

	Fonts
	Embed the Font
	Configure the Font
	Use the Font
	Taking the Application for a Spin

	Summary
	Source Code

	Extra Assignment
	Animate the BoxView Overlay
	Animate the New Widget
	Source Code

	Chapter 10: Local Data
	Abstract
	What Is Local Data?
	File System
	Cache Directory
	App Data Directory

	Database
	Repository Pattern
	Creating a Board
	Listing Your Boards
	Load the List in AppShellViewModel
	Load the List in BoardListPageViewModel
	Load the List in BoardSearchHandler

	Loading a Board

	SQLite
	Installing SQLite-net
	Using SQLite-net
	Connecting to an SQLite Database
	Mapping Your Models
	Creating Your Tables
	Inserting into an SQLite Database
	Reading a Collection from an SQLite Database
	Reading a Single Entity from an SQLite Database
	Deleting from an SQLite Database
	Updating an Entity in an SQLite Database

	LiteDB
	Installing LiteDB
	Using LiteDB
	Connecting to a LiteDB Database
	Mapping Your Models
	Creating Your Tables
	Inserting into a LiteDB Database
	Reading a Collection from a LiteDB Database
	Reading a Single Entity from a LiteDB Database
	Deleting from a LiteDB Database
	Updating an Entity in a LiteDB Database

	Database Summary

	Application Settings (Preferences)
	What Can Be Stored in Preferences?
	Setting a Value in Preferences
	Getting a Value in Preferences
	Checking If a Key Exists in Preferences
	Removing a Preference
	Displaying Our Preferences

	Secure Storage
	Storing a Value Securely
	Reading a Secure Value
	Removing a Secure Value
	Platform Specifics
	Android
	iOS and macOS
	Windows

	Viewing the Result
	Summary
	Source Code

	Extra Assignment
	Source Code

	Chapter 11: Remote Data
	Abstract
	What Is Remote Data?
	Considerations When Handling Remote Data
	Loading Times
	Failures
	Security

	Web Services
	The Open Weather API
	Creating an Open Weather Account
	Creating an Open Weather API Key
	Examining the Data
	Using System.Text.Json
	Creating Your Models
	Connecting to the Open Weather API
	Creating the WeatherWidgetView
	Creating the WeatherWidgetViewModel
	Registering Your Widget
	Testing Your Widget

	Adding Some State
	Converting the State to UI
	Displaying the Loading State
	Displaying the Loaded State
	Displaying the Error State
	Network Resilience Handling

	Simplifying Web Service Access
	Prebuilt Libraries
	Code Generation Libraries
	Adding the Refit NuGet Package

	Further Reading
	StateContainer from CommunityToolkit.Maui

	Summary
	Source Code

	Extra Assignment
	TODO Widget
	Quote of the Day Widget
	NASA Space Image of the Day Widget
	Source Code

	Chapter 12: Getting Specific
	Abstract
	.NET MAUI Essentials
	Permissions
	Checking the Status of a Permission
	Requesting Permission
	Handling Permissions in Your Application

	Using the Geolocation API
	Registering the Geolocation Service
	Using the Geolocation Service
	Registering the LocationService
	Using the ILocationService
	Displaying Permission Errors to Your User

	Configuring Platform-Specific Components
	Android
	iOS/Mac
	Windows

	Platform-Specific API Access
	Platform-Specific Code with Compiler Directives
	Platform-Specific Code in Platform Folders

	Overriding the Platform-Specific UI
	OnPlatform
	OnPlatform Markup Extension
	Conditional Statements

	Handlers
	Customizing Controls with Mappers
	Select All Text on Android
	Select All Text on iOS/Mac Catalyst
	Select All Text on Windows
	Applying the Handler Globally
	Applying the Handler on a Single Page
	Applying the Handler to Specific Instances

	Summary
	Source Code

	Extra Assignment
	Barometer Widget
	Geocoding Lookup
	Source Code

	Chapter 13: Testing
	Abstract
	Unit Testing
	Unit Testing in .NET MAUI
	xUnit
	NUnit
	MSTest
	Your Chosen Testing Framework

	Adding Your Own Unit Tests
	Adding a Unit Test Project to Your Solution
	Modify Your Application Project to Target net9.0
	Adding a Reference to the Project to Test
	Modify Your Test Project to Use MAUI Dependencies

	Testing Your View Models
	Testing BoardDetailsPageViewModel
	Testing INotifyPropertyChanged

	Testing Asynchronous Operations
	Creating Your ILocationService Mock
	Creating Your SecureStorage Mock
	Creating Your WeatherForecastService Mock
	Creating Your Asynchronous Tests

	Testing Your Views
	Creating Your ClockWidgetViewModel Mock
	Creating Your View Tests

	Device Testing
	Creating a Device Test Project
	Add a New Project to the Solution
	Add the Device Test Runner NuGet Package
	Remove Unnecessary Contents
	Replace CreateMauiApp
	Add a Reference to the WidgetBoard Project
	Remove Extra Entries in Project File

	Adding a Device-Specific Test
	Running Device-Specific Tests

	Snapshot Testing
	Snapshot Testing Your Application
	Add the Verify.Xunit NuGet Package
	Add a Reference to the WidgetBoard and WidgetBoard.Tests Projects

	Passing Thoughts

	Summary
	Source Code

	Chapter 14: Automation Testing
	Abstract
	What Is Automation Testing?
	Automation Testing in .NET MAUI
	Installing Appium
	Installing Node.js
	Install Appium
	macOS
	Windows

	Install Appium Driver for Android
	Install Appium Driver for iOS
	Install Appium Driver for macOS
	Install Appium Driver for Windows
	Install and Run WinAppDriver
	Install Appium Inspector

	Creating the Automation Test Project
	Add the Appium NuGet Package
	Creating an Appium Server
	Creating the Appium Platform Drivers
	Creating the Android Driver
	Creating the iOS Driver
	Creating the macOS Driver
	Creating the Windows Driver

	Parameterizing the Tests
	Configuration for Android
	Configuration for iOS
	Configuration for macOS
	Configuration for Windows
	Configuring Visual Studio to Use a runsettings File
	Running Tests from Command Line/Terminal

	Writing the Automation Tests
	Testing the Add New Board Button
	Adding a Test to Create Boards
	Adding a Test to Interact with a CollectionView

	Summary
	Source Code

	Chapter 15: Let’s Get Graphical
	Abstract
	.NET MAUI Graphics
	Drawing on the Screen
	Updating the Surface
	Drawing a Line
	Drawing a Path
	Maintaining the State of the Canvas

	Further Reading

	Building a Sketch Widget
	Creating the SketchWidgetViewModel
	Representing a User Interaction
	Creating the SketchWidgetView
	Modifying the SketchWidgetView.xaml
	Modifying the SketchWidgetView.xaml.cs

	Registering Your Widget
	Taking Your Widget for a Test Draw

	Building an Analog Clock Widget
	Creating the AnalogClockWidgetView
	Modifying the AnalogClockWidgetView.xaml
	Modifying the AnalogClockWidgetView.xaml.cs

	Creating the AnalogClockWidgetViewModel
	Registering Your Widget
	Taking Your Widget for a Test Draw

	Summary
	Source Code

	Extra Assignment
	Source Code

	Chapter 16: Releasing Our Application
	Abstract
	Distributing Your Application
	macOS
	Windows
	Android
	Generating Your Android Application
	Signing Your Android Application
	Additional Resources

	iOS
	Certificate
	Identifier
	Capabilities
	Entitlements
	Provisioning Profiles
	Generating Your iOS Application
	Additional Resources

	macOS
	Generating Your macOS Application
	Additional Resources

	Windows
	Generating Your Windows Application
	Additional Resources

	Optimizing Your Application
	Following Good Practices
	Performance
	Startup Tracing
	Image Sizes
	Use of ObservableCollection
	Additional Resources

	Trimming
	What Is Trimming?
	Enable Trimming
	Warning IL2087
	Warning IL2026
	Warning IL2026

	Ahead-of-Time Compilation
	Enable NativeAOT
	Remove Refit
	Warning IL3050

	When Libraries Don’t Support Trimming or AOT
	Results
	Crashes/Analytics
	Sentry

	Obfuscation

	Distributing Test Versions
	Summary

	Chapter 17: Conclusion
	Abstract
	Looking at the Final Product
	Taking the Project Further

	Useful Resources
	StackOverflow
	GitHub
	YouTube
	Gerald Versluis
	James Montemagno

	Social Media
	Yet More Goodness

	Looking Forward

	Index

